!IDEAL:MODEL_LAYER:INITIALIZATION
!
! This MODULE holds the routines which are used to perform various initializations
! for the individual domains.
! This MODULE CONTAINS the following routines:
! initialize_field_test - 1. Set different fields to different constant
! values. This is only a test. If the correct
! domain is not found (based upon the "id")
! then a fatal error is issued.
!-----------------------------------------------------------------------
MODULE module_initialize_ideal
(docs) 2
USE module_domain
USE module_io_domain
USE module_state_description
USE module_model_constants
USE module_bc
USE module_timing
USE module_configure
USE module_init_utilities
#ifdef DM_PARALLEL
USE module_dm
#endif
CONTAINS
!-------------------------------------------------------------------
! this is a wrapper for the solver-specific init_domain routines.
! Also dereferences the grid variables and passes them down as arguments.
! This is crucial, since the lower level routines may do message passing
! and this will get fouled up on machines that insist on passing down
! copies of assumed-shape arrays (by passing down as arguments, the
! data are treated as assumed-size -- ie. f77 -- arrays and the copying
! business is avoided). Fie on the F90 designers. Fie and a pox.
SUBROUTINE init_domain
(docs) ( grid ) 3,24
IMPLICIT NONE
! Input data.
TYPE (domain), POINTER :: grid
! Local data.
INTEGER :: idum1, idum2
CALL set_scalar_indices_from_config
( head_grid%id , idum1, idum2 )
CALL init_domain_rk
( grid &
!
#include <actual_new_args.inc>
!
)
END SUBROUTINE init_domain
!-------------------------------------------------------------------
SUBROUTINE init_domain_rk
(docs) ( grid & 12,369
!
# include <dummy_new_args.inc>
!
)
IMPLICIT NONE
! Input data.
TYPE (domain), POINTER :: grid
# include <dummy_new_decl.inc>
TYPE (grid_config_rec_type) :: config_flags
! Local data
INTEGER :: &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte, &
i, j, k
! Local data
INTEGER, PARAMETER :: nl_max = 1000
REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
INTEGER :: nl_in
INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2, t_min, t_max
! REAL, EXTERNAL :: interp_0
REAL :: hm, xa, xpos, xposml, xpospl
REAL :: pi
! stuff from original initialization that has been dropped from the Registry
REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
REAL :: qvf1, qvf2, pd_surf
INTEGER :: it
real :: thtmp, ptmp, temp(3)
LOGICAL :: moisture_init
LOGICAL :: stretch_grid, dry_sounding
REAL :: xa1, xal1,pii,hm1 ! data for intercomparison setup from dale
#ifdef DM_PARALLEL
# include <data_calls.inc>
#endif
SELECT CASE ( model_data_order )
CASE ( DATA_ORDER_ZXY )
kds = grid%sd31 ; kde = grid%ed31 ;
ids = grid%sd32 ; ide = grid%ed32 ;
jds = grid%sd33 ; jde = grid%ed33 ;
kms = grid%sm31 ; kme = grid%em31 ;
ims = grid%sm32 ; ime = grid%em32 ;
jms = grid%sm33 ; jme = grid%em33 ;
kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch
its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch
jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
CASE ( DATA_ORDER_XYZ )
ids = grid%sd31 ; ide = grid%ed31 ;
jds = grid%sd32 ; jde = grid%ed32 ;
kds = grid%sd33 ; kde = grid%ed33 ;
ims = grid%sm31 ; ime = grid%em31 ;
jms = grid%sm32 ; jme = grid%em32 ;
kms = grid%sm33 ; kme = grid%em33 ;
its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch
kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch
CASE ( DATA_ORDER_XZY )
ids = grid%sd31 ; ide = grid%ed31 ;
kds = grid%sd32 ; kde = grid%ed32 ;
jds = grid%sd33 ; jde = grid%ed33 ;
ims = grid%sm31 ; ime = grid%em31 ;
kms = grid%sm32 ; kme = grid%em32 ;
jms = grid%sm33 ; jme = grid%em33 ;
its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch
jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
END SELECT
hm = 000.
xa = 5.0
icm = ide/2
xa1 = 5000./500.
xal1 = 4000./500.
pii = 2.*asin(1.0)
hm1 = 250.
! hm1 = 1000.
stretch_grid = .true.
! z_scale = .50
z_scale = 1.675
pi = 2.*asin(1.0)
write(6,*) ' pi is ',pi
nxc = (ide-ids)/2
nyc = (jde-jds)/2
CALL model_to_grid_config_rec
( grid%id , model_config_rec , config_flags )
! here we check to see if the boundary conditions are set properly
CALL boundary_condition_check
( config_flags, bdyzone, error, grid%id )
moisture_init = .true.
grid%itimestep=0
#ifdef DM_PARALLEL
CALL wrf_dm_bcast_bytes
( icm , IWORDSIZE )
CALL wrf_dm_bcast_bytes
( jcm , IWORDSIZE )
#endif
CALL nl_set_mminlu
(1, ' ')
CALL nl_set_iswater
(1,0)
CALL nl_set_cen_lat
(1,40.)
CALL nl_set_cen_lon
(1,-105.)
CALL nl_set_truelat1
(1,0.)
CALL nl_set_truelat2
(1,0.)
CALL nl_set_moad_cen_lat
(1,0.)
CALL nl_set_stand_lon
(1,0.)
CALL nl_set_map_proj
(1,0)
! here we initialize data we currently is not initialized
! in the input data
DO j = jts, jte
DO i = its, ite
grid%msftx(i,j) = 1.
grid%msfty(i,j) = 1.
grid%msfux(i,j) = 1.
grid%msfuy(i,j) = 1.
grid%msfvx(i,j) = 1.
grid%msfvx_inv(i,j)= 1.
grid%msfvy(i,j) = 1.
grid%sina(i,j) = 0.
grid%cosa(i,j) = 1.
grid%e(i,j) = 0.
grid%f(i,j) = 0.
END DO
END DO
DO j = jts, jte
DO k = kts, kte
DO i = its, ite
grid%ww(i,k,j) = 0.
END DO
END DO
END DO
grid%step_number = 0
! set up the grid
IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
DO k=1, kde
grid%znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
(1.-exp(-1./z_scale))
ENDDO
ELSE
DO k=1, kde
grid%znw(k) = 1. - float(k-1)/float(kde-1)
ENDDO
ENDIF
DO k=1, kde-1
grid%dnw(k) = grid%znw(k+1) - grid%znw(k)
grid%rdnw(k) = 1./grid%dnw(k)
grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k))
ENDDO
DO k=2, kde-1
grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1))
grid%rdn(k) = 1./grid%dn(k)
grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k)
grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k)
ENDDO
cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2)
cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3)
grid%cf1 = grid%fnp(2) + cof1
grid%cf2 = grid%fnm(2) - cof1 - cof2
grid%cf3 = cof2
grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1)
grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1)
grid%rdx = 1./config_flags%dx
grid%rdy = 1./config_flags%dy
! get the sounding from the ascii sounding file, first get dry sounding and
! calculate base state
write(6,*) ' getting dry sounding for base state '
dry_sounding = .true.
CALL get_sounding
( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
nl_max, nl_in, .true.)
write(6,*) ' returned from reading sounding, nl_in is ',nl_in
! find ptop for the desired ztop (ztop is input from the namelist),
! and find surface pressure
grid%p_top = interp_0
( p_in, zk, config_flags%ztop, nl_in )
DO j=jts,jte
DO i=its,ite ! flat surface
!! grid%ht(i,j) = 0.
grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
! grid%ht(i,j) = hm1*exp(-(( float(i-icm)/xa1)**2)) &
! *( (cos(pii*float(i-icm)/xal1))**2 )
grid%phb(i,1,j) = g*grid%ht(i,j)
grid%php(i,1,j) = 0.
grid%ph0(i,1,j) = grid%phb(i,1,j)
ENDDO
ENDDO
DO J = jts, jte
DO I = its, ite
p_surf = interp_0
( p_in, zk, grid%phb(i,1,j)/g, nl_in )
grid%mub(i,j) = p_surf-grid%p_top
! this is dry hydrostatic sounding (base state), so given p (coordinate),
! interp theta (from interp) and compute 1/rho from eqn. of state
DO K = 1, kte-1
p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top
grid%pb(i,k,j) = p_level
grid%t_init(i,k,j) = interp_0
( theta, p_in, p_level, nl_in ) - t0
grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm
ENDDO
! calc hydrostatic balance (alternatively we could interp the geopotential from the
! sounding, but this assures that the base state is in exact hydrostatic balance with
! respect to the model eqns.
DO k = 2,kte
grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j)
ENDDO
ENDDO
ENDDO
write(6,*) ' ptop is ',grid%p_top
write(6,*) ' base state mub(1,1), p_surf is ',grid%mub(1,1),grid%mub(1,1)+grid%p_top
! calculate full state for each column - this includes moisture.
write(6,*) ' getting moist sounding for full state '
dry_sounding = .false.
CALL get_sounding
( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
nl_max, nl_in, .false. )
DO J = jts, min(jde-1,jte)
DO I = its, min(ide-1,ite)
! At this point grid%p_top is already set. find the DRY mass in the column
! by interpolating the DRY pressure.
pd_surf = interp_0
( pd_in, zk, grid%phb(i,1,j)/g, nl_in )
! compute the perturbation mass and the full mass
grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j)
grid%mu_2(i,j) = grid%mu_1(i,j)
grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j)
! given the dry pressure and coordinate system, interp the potential
! temperature and qv
do k=1,kde-1
p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top
grid%moist(i,k,j,P_QV) = interp_0
( qv, pd_in, p_level, nl_in )
grid%t_1(i,k,j) = interp_0
( theta, pd_in, p_level, nl_in ) - t0
grid%t_2(i,k,j) = grid%t_1(i,k,j)
enddo
! integrate the hydrostatic equation (from the RHS of the bigstep
! vertical momentum equation) down from the top to get p.
! first from the top of the model to the top pressure
k = kte-1 ! top level
qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k,j,P_QV))
qvf2 = 1./(1.+qvf1)
qvf1 = qvf1*qvf2
! grid%p(i,k,j) = - 0.5*grid%mu_1(i,j)/grid%rdnw(k)
grid%p(i,k,j) = - 0.5*(grid%mu_1(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2
qvf = 1. + rvovrd*moist(i,k,j,P_QV)
grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* &
(((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm)
grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j)
! down the column
do k=kte-2,1,-1
qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
qvf2 = 1./(1.+qvf1)
qvf1 = qvf1*qvf2
grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_1(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1)
qvf = 1. + rvovrd*moist(i,k,j,P_QV)
grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* &
(((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm)
grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j)
enddo
! this is the hydrostatic equation used in the model after the
! small timesteps. In the model, al (inverse density)
! is computed from the geopotential.
grid%ph_1(i,1,j) = 0.
DO k = 2,kte
grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (1./grid%rdnw(k-1))*( &
(grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ &
grid%mu_1(i,j)*grid%alb(i,k-1,j) )
grid%ph_2(i,k,j) = grid%ph_1(i,k,j)
grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j)
ENDDO
if((i==2) .and. (j==2)) then
write(6,*) ' ph_1 calc ',grid%ph_1(2,1,2),grid%ph_1(2,2,2),&
grid%mu_1(2,2)+grid%mub(2,2),grid%mu_1(2,2), &
grid%alb(2,1,2),grid%al(1,2,1),grid%rdnw(1)
endif
ENDDO
ENDDO
! cold bubble input (from straka et al, IJNMF, vol 17, 1993 pp 1-22)
t_min = grid%t_1(its,kts,jts)
t_max = t_min
u_mean = 00.
xpos = config_flags%dx*nxc - u_mean*900.
xposml = xpos - config_flags%dx*(ide-1)
xpospl = xpos + config_flags%dx*(ide-1)
DO J = jts, min(jde-1,jte)
DO I = its, min(ide-1,ite)
! xrad = config_flags%dx*float(i-nxc)/4000. ! 4000 meter horizontal radius
! ! centered in the domain
xrad = min( abs(config_flags%dx*float(i)-xpos), &
abs(config_flags%dx*float(i)-xposml), &
abs(config_flags%dx*float(i)-xpospl))/4000.
DO K = 1, kte-1
! put in preturbation theta (bubble) and recalc density. note,
! the mass in the column is not changing, so when theta changes,
! we recompute density and geopotential
zrad = 0.5*(grid%ph_1(i,k,j)+grid%ph_1(i,k+1,j) &
+grid%phb(i,k,j)+grid%phb(i,k+1,j))/g
zrad = (zrad-3000.)/2000. ! 2000 meter vertical radius,
! centered at z=3000,
RAD=SQRT(xrad*xrad+zrad*zrad)
IF(RAD <= 1.) THEN
! perturbation temperature is 15 C, convert to potential temperature
delt = -15.0 / ((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**rcp
grid%T_1(i,k,j)=grid%T_1(i,k,j)+delt*(COS(PI*RAD)+1.0)/2.
grid%T_2(i,k,j)=grid%T_1(i,k,j)
qvf = 1. + rvovrd*moist(i,k,j,P_QV)
grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* &
(((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm)
grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j)
ENDIF
t_min = min(t_min, grid%t_1(i,k,j))
t_max = max(t_max, grid%t_1(i,k,j))
ENDDO
! rebalance hydrostatically
DO k = 2,kte
grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (1./grid%rdnw(k-1))*( &
(grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ &
grid%mu_1(i,j)*grid%alb(i,k-1,j) )
grid%ph_2(i,k,j) = grid%ph_1(i,k,j)
grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j)
ENDDO
ENDDO
ENDDO
write(6,*) ' min and max theta perturbation ',t_min,t_max
! -- end bubble insert
write(6,*) ' mu_1 from comp ', grid%mu_1(1,1)
write(6,*) ' full state sounding from comp, ph, p, al, t_1, qv '
do k=1,kde-1
write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1)+grid%phb(1,k,1), &
grid%p(1,k,1)+grid%pb(1,k,1), grid%alt(1,k,1), &
grid%t_1(1,k,1)+t0, moist(1,k,1,P_QV)
enddo
write(6,*) ' pert state sounding from comp, ph_1, pp, alp, t_1, qv '
do k=1,kde-1
write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1), &
grid%p(1,k,1), grid%al(1,k,1), &
grid%t_1(1,k,1), moist(1,k,1,P_QV)
enddo
write(6,*) ' '
write(6,*) ' k, model level, dz '
do k=1,kde-1
write(6,'(i3,1x,e12.5,1x,f10.2)') k, &
.5*(grid%ph_1(1,k,1)+grid%phb(1,k,1)+grid%ph_1(1,k+1,1)+grid%phb(1,k+1,1))/g, &
(grid%ph_1(1,k+1,1)+grid%phb(1,k+1,1)-grid%ph_1(1,k,1)-grid%phb(1,k,1))/g
enddo
write(6,*) ' model top (m) is ', (grid%ph_1(1,kde,1)+grid%phb(1,kde,1))/g
! interp v
DO J = jts, jte
DO I = its, min(ide-1,ite)
IF (j == jds) THEN
z_at_v = grid%phb(i,1,j)/g
ELSE IF (j == jde) THEN
z_at_v = grid%phb(i,1,j-1)/g
ELSE
z_at_v = 0.5*(grid%phb(i,1,j)+grid%phb(i,1,j-1))/g
END IF
p_surf = interp_0
( p_in, zk, z_at_v, nl_in )
DO K = 1, kte
p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top
grid%v_1(i,k,j) = interp_0
( v, p_in, p_level, nl_in )
grid%v_2(i,k,j) = grid%v_1(i,k,j)
ENDDO
ENDDO
ENDDO
! interp u
DO J = jts, min(jde-1,jte)
DO I = its, ite
IF (i == ids) THEN
z_at_u = grid%phb(i,1,j)/g
ELSE IF (i == ide) THEN
z_at_u = grid%phb(i-1,1,j)/g
ELSE
z_at_u = 0.5*(grid%phb(i,1,j)+grid%phb(i-1,1,j))/g
END IF
p_surf = interp_0
( p_in, zk, z_at_u, nl_in )
DO K = 1, kte
p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top
grid%u_1(i,k,j) = interp_0
( u, p_in, p_level, nl_in )
grid%u_2(i,k,j) = grid%u_1(i,k,j)
ENDDO
ENDDO
ENDDO
! set w
DO J = jts, min(jde-1,jte)
DO K = kts, kte
DO I = its, min(ide-1,ite)
grid%w_1(i,k,j) = 0.
grid%w_2(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
! set a few more things
DO J = jts, min(jde-1,jte)
DO K = kts, kte-1
DO I = its, min(ide-1,ite)
grid%h_diabatic(i,k,j) = 0.
ENDDO
ENDDO
ENDDO
DO k=1,kte-1
grid%t_base(k) = grid%t_1(1,k,1)
grid%qv_base(k) = moist(1,k,1,P_QV)
grid%u_base(k) = grid%u_1(1,k,1)
grid%v_base(k) = grid%v_1(1,k,1)
grid%z_base(k) = 0.5*(grid%phb(1,k,1)+grid%phb(1,k+1,1)+grid%ph_1(1,k,1)+grid%ph_1(1,k+1,1))/g
ENDDO
DO J = jts, min(jde-1,jte)
DO I = its, min(ide-1,ite)
thtmp = grid%t_2(i,1,j)+t0
ptmp = grid%p(i,1,j)+grid%pb(i,1,j)
temp(1) = thtmp * (ptmp/p1000mb)**rcp
thtmp = grid%t_2(i,2,j)+t0
ptmp = grid%p(i,2,j)+grid%pb(i,2,j)
temp(2) = thtmp * (ptmp/p1000mb)**rcp
thtmp = grid%t_2(i,3,j)+t0
ptmp = grid%p(i,3,j)+grid%pb(i,3,j)
temp(3) = thtmp * (ptmp/p1000mb)**rcp
grid%TSK(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
grid%TMN(I,J)=grid%TSK(I,J)-0.5
ENDDO
ENDDO
RETURN
END SUBROUTINE init_domain_rk
SUBROUTINE init_module_initialize
(docs) ,8
END SUBROUTINE init_module_initialize
!---------------------------------------------------------------------
! test driver for get_sounding
!
! implicit none
! integer n
! parameter(n = 1000)
! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
! logical dry
! integer nl,k
!
! dry = .false.
! dry = .true.
! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
! write(6,*) ' input levels ',nl
! write(6,*) ' sounding '
! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
! do k=1,nl
! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
! enddo
! end
!
!---------------------------------------------------------------------------
subroutine get_sounding
(docs) ( zk, p, p_dry, theta, rho, & 21,20
u, v, qv, dry, nl_max, nl_in, base_state )
implicit none
integer nl_max, nl_in
real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
logical dry
logical base_state
integer n, iz
parameter(n=1000)
logical debug
parameter( debug = .false.)
! input sounding data
real p_surf, th_surf, qv_surf
real pi_surf, pi(n)
real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
! diagnostics
real rho_surf, p_input(n), rho_input(n)
real pm_input(n) ! this are for full moist sounding
! local data
real r
parameter (r = r_d)
integer k, it, nl
real qvf, qvf1, dz
! first, read the sounding
call read_sounding
( p_surf, th_surf, qv_surf, &
h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
! iz = 1
! do k=2,nl
! if(h_input(k) .lt. 12000.) iz = k
! enddo
! write(6,*) " tropopause ",iz,h_input(iz)
! if(dry) then
! write(6,*) ' nl is ',nl
! do k=1,nl
! th_input(k) = th_input(k)+10.+10*float(k)/nl
! enddo
! write(6,*) ' finished adjusting theta '
! endif
! do k=1,nl
! u_input(k) = 2*u_input(k)
! enddo
!
! end if
if(dry) then
do k=1,nl
qv_input(k) = 0.
enddo
endif
if(debug) write(6,*) ' number of input levels = ',nl
nl_in = nl
if(nl_in .gt. nl_max ) then
write(6,*) ' too many levels for input arrays ',nl_in,nl_max
call wrf_error_fatal
( ' too many levels for input arrays ' )
end if
! compute diagnostics,
! first, convert qv(g/kg) to qv(g/g)
do k=1,nl
qv_input(k) = 0.001*qv_input(k)
enddo
p_surf = 100.*p_surf ! convert to pascals
qvf = 1. + rvovrd*qv_input(1)
rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
pi_surf = (p_surf/p1000mb)**(r/cp)
if(debug) then
write(6,*) ' surface density is ',rho_surf
write(6,*) ' surface pi is ',pi_surf
end if
! integrate moist sounding hydrostatically, starting from the
! specified surface pressure
! -> first, integrate from surface to lowest level
qvf = 1. + rvovrd*qv_input(1)
qvf1 = 1. + qv_input(1)
rho_input(1) = rho_surf
dz = h_input(1)
do it=1,10
pm_input(1) = p_surf &
- 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
enddo
! integrate up the column
do k=2,nl
rho_input(k) = rho_input(k-1)
dz = h_input(k)-h_input(k-1)
qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here
do it=1,20
pm_input(k) = pm_input(k-1) &
- 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
enddo
enddo
! we have the moist sounding
! next, compute the dry sounding using p at the highest level from the
! moist sounding and integrating down.
p_input(nl) = pm_input(nl)
do k=nl-1,1,-1
dz = h_input(k+1)-h_input(k)
p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
enddo
! write(6,*) ' zeroing u input '
do k=1,nl
zk(k) = h_input(k)
p(k) = pm_input(k)
p_dry(k) = p_input(k)
theta(k) = th_input(k)
rho(k) = rho_input(k)
u(k) = u_input(k)
! u(k) = 0.
v(k) = v_input(k)
qv(k) = qv_input(k)
enddo
if(debug) then
write(6,*) ' sounding '
write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
do k=1,nl
write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
enddo
end if
end subroutine get_sounding
!-------------------------------------------------------
subroutine read_sounding
(docs) ( ps,ts,qvs,h,th,qv,u,v,n,nl,debug ) 9
implicit none
integer n,nl
real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
logical end_of_file
logical debug
integer k
open(unit=10,file='input_sounding',form='formatted',status='old')
rewind(10)
read(10,*) ps, ts, qvs
if(debug) then
write(6,*) ' input sounding surface parameters '
write(6,*) ' surface pressure (mb) ',ps
write(6,*) ' surface pot. temp (K) ',ts
write(6,*) ' surface mixing ratio (g/kg) ',qvs
end if
end_of_file = .false.
k = 0
do while (.not. end_of_file)
read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
k = k+1
if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
go to 110
100 end_of_file = .true.
110 continue
enddo
nl = k
close(unit=10,status = 'keep')
end subroutine read_sounding
END MODULE module_initialize_ideal