<HTML> <BODY BGCOLOR=#ccccdd LINK=#0000aa VLINK=#0000ff ALINK=#ff0000 ><BASE TARGET="bottom_target"><PRE>
<A NAME='GEN_BE_ENSRF'><A href='../../html_code/gen_be/gen_be_ensrf.f90.html#GEN_BE_ENSRF' TARGET='top_target'><IMG SRC="../../gif/bar_yellow.gif" border=0></A>

program gen_be_ensrf,9
!
!---------------------------------------------------------------------- 
!  Purpose : Perform an Ensemble Square Root Filter (EnSRF) assimilation
!  using WRF forecast data.
!
!  Owner: Dale Barker (NCAR/MMM)
!  Please acknowledge author/institute in work that uses this code.
!
!----------------------------------------------------------------------

#ifdef crayx1
#define iargc ipxfargc
#endif

   use da_control, only : stdout,stderr,filename_len
   use da_gen_be, only : da_stage0_initialize, da_get_field, da_get_trh

   implicit none

   type info_type
       character*40   :: id
       character*40   :: platform
       integer        :: plat
       integer        :: variable
   end type info_type

   type loc_type
       real           :: x
       real           :: y
       real           :: z
   end type loc_type

   type ob_type
      type (info_type):: info
      type (loc_type) :: loc
      real            :: yo
      real            :: omb_mean
      real            :: oma_mean
      real            :: omb_rms
      real            :: oma_rms
      real            :: sigma_o
      real            :: sigma_b
   end type ob_type

   integer, parameter    :: nv3d = 4                  ! #3D variables (u, v, T, q).
   integer, parameter    :: nv2d = 1                  ! #2D variables (ps).
   integer, parameter    :: unit = 100                ! Unit number.

   character (len=filename_len)   :: filestub                  ! General filename stub.
   character (len=filename_len)   :: input_file                ! Input file. 
   character (len=filename_len)   :: output_file               ! Output file. 
   character (len=10)    :: var                       ! Variable to search for.
   character (len=3)     :: ce                        ! Member index -&gt; character.

   integer               :: num_members               ! Ensemble size.
   integer               :: num_obs                   ! Number of observations.
   integer               :: ni                        ! 1st dimension size.
   integer               :: niu                       ! 1st dimension size (u)
   integer               :: nj                        ! 2nd dimension size.
   integer               :: njv                       ! 2nd dimension size (v)
   integer               :: nk                        ! 3rd dimension size.
   integer               :: nv                        ! Total number of 2D/3D variables.
   integer               :: nij, nijk, nijkv          ! Dimensions.
   integer               :: o, member, i, j, k, v     ! Loop counters.
   integer               :: imin, imax, jmin, jmax    ! Min/max i,j for localization.
   integer               :: ijkv                      ! 
   integer               :: index                     ! 
   integer               :: xend 
   real                  :: num_members_inv
   real                  :: num_members_inv1
   real                  :: cov_inf_fac               ! Covariance inflation factor.
   real                  :: cov_loc_rad_m             ! Covariance localization radius (m).
   real                  :: cov_loc_rad               ! Covariance localization radius (gridpts).
   real                  :: ds                        ! Grid resolution (m).
   real                  :: x1, y1                    ! Grid location of ob.
   real                  :: sigma_o2, sigma_b2
   real                  :: sigma_hh_inv
   real                  :: sigma_xh
   real                  :: beta     
   real                  :: o_minus_b                 ! Observation minus forecast.
   real                  :: kalman_gain
   real                  :: x_mean
   real                  :: h_mean
   real                  :: hb_mean
   real                  :: ha_mean
   real                  :: sum_f, sum_a
   real                  :: hf, ha 

   type (ob_type),pointer:: ob(:)

   character(len=10),allocatable :: varr(:)          ! Variable name.
   integer, allocatable  :: nkk(:)              ! Vertical dimension of field.
   integer, allocatable  :: xstart(:)           ! Starting position of variable..

   real, allocatable     :: x(:,:), xf(:,:)
   ! real, allocatable     :: xf_cif(:,:)
   real, allocatable     :: h(:), h_devn(:)
   real, allocatable     :: x_devn(:)

   real, allocatable     :: uc(:,:)                   ! u-wind (C grid).
   real, allocatable     :: vc(:,:)                   ! v-wind (C grid).
   real, allocatable     :: field(:,:)                ! Input field.
   real, allocatable     :: dummy(:,:)                ! Dummy.
   real, allocatable     :: corr(:,:)                 ! Correlation.
   real, allocatable     :: xf_mean(:)                ! Prior mean.
   real, allocatable     :: xa_mean(:)                ! Posterior mean.
 
   namelist / gen_be_ensrf_nl / filestub, num_members, &amp;
                                cov_inf_fac, cov_loc_rad_m

   stderr = 0
   stdout = 6

!---------------------------------------------------------------------------------------------
   write(6,'(/a)')' [1] Initialize information.'
!---------------------------------------------------------------------------------------------

   filestub = 'test'
   num_members = 56
   cov_inf_fac = 1.0
   cov_loc_rad_m = 1500000.0

   open(unit=unit, file='gen_be_ensrf_nl.nl', &amp;
        form='formatted', status='old', action='read')
   read(unit, gen_be_ensrf_nl)
   close(unit)

   write(6,'(a,a)')'   Filestub = ', trim(filestub)
   write(6,'(a,i4)')'   Number of ensemble members = ', num_members
   write(6,'(a,f16.8)')'   Covariance Inflation Factor = ', cov_inf_fac
   write(6,'(a,f16.8)')'   Covariance Localization Radius (m) = ', cov_loc_rad_m

   num_members_inv = 1.0 / real(num_members)
   num_members_inv1 = 1.0 / real(num_members-1)

!---------------------------------------------------------------------------------------------
   write(6,'(/a)')' [2] Set up data dimensions and allocate arrays:' 
!---------------------------------------------------------------------------------------------

!  Get grid dimensions from first T field:
   input_file = trim(filestub)//'.e001'
   var = 'T'
   call da_stage0_initialize( input_file, var, ni, nj, nk, ds )
   niu = ni+1 ! u i dimension is 1 larger.
   njv = nj+1 ! v j dimension is 1 larger.
   cov_loc_rad = cov_loc_rad_m / ds
   nij = ni * nj
   nijk = nij * nk
   nijkv = nv3d * nijk + nv2d * nij ! #3D + #2D variables.
   nv = nv3d + nv2d
print *, ni, nj, nk, nv, nij, nijk, nv3d, nv2d, nijkv
!  Allocate arrays:
   allocate ( varr(1:nv) )
   allocate ( nkk(1:nv) )
   allocate ( xstart(1:nv) )
   allocate( x(1:nijkv,1:num_members) )
   allocate( xf(1:nijkv,1:num_members) )
   ! allocate( xf_cif(1:nijkv,1:num_members) )
   allocate( h(1:num_members) )
   allocate( h_devn(1:num_members) )
   allocate( x_devn(1:num_members) )
   do v = 1, nv3d
      nkk(v) = nk
   end do
   do v = nv3d + 1, nv
      nkk(v) = 1 
   end do
   allocate( field(1:ni,1:nj) )
   allocate( uc(1:niu,1:nj) )
   allocate( vc(1:ni,1:njv) )
   allocate( dummy(1:ni,1:nj) )
   allocate( corr(1:ni,1:nj) )

!  Hardwired:
   varr(1) = 'U'
   varr(2) = 'V'
   varr(3) = 'T'
   varr(4) = 'QVAPOR'
   varr(5) = 'PSFC'

!---------------------------------------------------------------------------------------------
   write(6,'(/a)')' [3] Read observations.'
!---------------------------------------------------------------------------------------------

   input_file = 'observations'
   open(unit, file = input_file, status='old')
!write(56,*)1
!      write(56,'(2a10,i6,5f16.8)')'test', 'dale', 3, &amp;
!            20.0, 20.0, 12.0, 250.0, 1.0
!stop
   read(unit,*)num_obs
   write(6,'(a,i10)')'   Number of observations = ', num_obs
   allocate( ob(1:num_obs) )

   do o = 1, num_obs
      read(unit,'(2a10,i6,5f16.8)')ob(o) % info % id, ob(o) % info % platform, &amp;
                ob(o) % info % variable, &amp;
                ob(o) % loc % x, ob(o) % loc % y ,ob(o) % loc % z, &amp;
                ob(o) % yo, ob(o) % sigma_o
   end do

!---------------------------------------------------------------------------------------------
   write(6,'(/a)')' [4] Extract necessary fields from WRF ensemble forecasts.'
!---------------------------------------------------------------------------------------------

   xstart(1) = 1
   do v = 2, nv
      xstart(v) = xstart(v-1) + ( ni * nj * nkk(v-1) )
   end do

   do member = 1, num_members

      write(UNIT=ce,FMT='(i3.3)')member
      input_file = trim(filestub)//'.e'//ce  

      do v = 1, nv
         do k = 1, nkk(v)

            if ( varr(v) == 'U' ) then
               call da_get_field( input_file, varr(v), 3, niu, nj, nk, k, uc )
               do j = 1, nj
                  do i = 1, ni
                     field(i,j) = 0.5 * ( uc(i,j) + uc(i+1,j) )
                  end do
               end do
            end if

            if ( varr(v) == 'V' ) then
               call da_get_field( input_file, varr(v), 3, ni, njv, nk, k, vc )
               do j = 1, nj
                  do i = 1, ni
                     field(i,j) = 0.5 * ( vc(i,j) + vc(i,j+1) )
                  end do
               end do
            end if

            if ( varr(v) == "T" ) then
!              Read theta, and convert to temperature:
               call da_get_trh( input_file, ni, nj, nk, k, field, dummy )
            end if

!           Read mixing ratio, and convert to specific humidity:
            if ( varr(v) == 'QVAPOR' ) then
               call da_get_field( input_file, varr(v), 3, ni, nj, nk, k, field )
               field(:,:) = field(:,:) / ( 1.0 + field(:,:) )
            end if

!           Read surface pressure:
            if ( varr(v) == 'PSFC' ) then
               call da_get_field( input_file, varr(v), 2, ni, nj, nk, k, field )
            end if

!           Fill 4D array:
            index = xstart(v) + (k-1) * nij
            do j = 1, nj
               do i = 1, ni
                  xf(index,member) = field(i,j)
                  index = index + 1
               end do
            end do
         end do ! k
      end do ! v
   end do !member

!  Initialize analysis as first guess:
   x(1:nijkv,1:num_members) = xf(1:nijkv,1:num_members)

!  Perform initial covariance inflation (to boost input be):
   call da_cov_inflation( nijkv, num_members, cov_inf_fac, x )
!   xf_cif(1:nijkv,1:num_members) = x(1:nijkv,1:num_members) ! Diagnostic

   deallocate( uc )
   deallocate( vc )
   deallocate( field )
   deallocate( dummy )

!---------------------------------------------------------------------------------------------
   write(6,'(/a)')' [5] Perform EnSRF:'
!---------------------------------------------------------------------------------------------

   do o = 1, num_obs 
      write(6,'(2(a,i8))')'     Assimilating observation ', o, ' of ', num_obs
      x1 = ob(o) % loc % x 
      y1 = ob(o) % loc % y 
      sigma_o2 = ob(o) % sigma_o * ob(o) % sigma_o

!     Perform observation operator:

      do member = 1, num_members
         call da_obs_operator( nv, ni, nj, nkk, xstart, ob(o), x(:,member), h(member) )
      end do

!     Mean and deviations of H(x):
      h_mean = sum(h(1:num_members)) * num_members_inv
      h_devn(1:num_members) = h(1:num_members) - h_mean

!     Covariance H Pf H^T:
      sigma_b2 = sum(h_devn(1:num_members) * h_devn(1:num_members)) * num_members_inv1

      ob(o) % sigma_b = sqrt(sigma_b2)

!     Store 1/(H Pf HT + R):
      sigma_hh_inv = 1.0 / ( sigma_b2 + sigma_o2 )

!     Calculate EnSRF deviation Kalman Gain scaling:
      beta = 1.0 / ( 1.0 + sqrt( sigma_o2 * sigma_hh_inv ) )

!     Ensemble mean innovation vector:
!!!DALE Uncomment for pseudo observation
!      print *, 'Running pseudo observation O-B=1.0:'
!      ob(o) % yo = h_mean + 1.0
!!!DALE
      o_minus_b = ob(o) % yo - h_mean
      write(6,'(a,2f15.5)')' Observation increment = ', o_minus_b
      write(6,'(a,2f15.5)')' Observation/forecast error variance = ', sigma_o2, sigma_b2

!-----------------------------------------------------------------------------
!     Calculate local support:
!-----------------------------------------------------------------------------

      imin = max(nint(ob(o) % loc % x - cov_loc_rad),1)
      imax = min(nint(ob(o) % loc % x + cov_loc_rad),ni)
      jmin = max(nint(ob(o) % loc % y - cov_loc_rad),1)
      jmax = min(nint(ob(o) % loc % y + cov_loc_rad),nj)

!      write(6,'(a,2f8.2)')'   Ob location(x/y) = ', ob(o) % loc % x, ob(o) % loc % y
!      write(6,'(a,4i5)')'   Min/max i/j = ', imin, imax, jmin, jmax

      do j = jmin, jmax
         do i = imin, imax
            call compact_support( x1, real(i), y1, real(j), cov_loc_rad, corr(i,j) )
         end do
      end do

      do v = 1, nv
         do k = 1, nkk(v)
            do j = jmin, jmax
               do i = imin, imax
                  ijkv = (v-1) * nijk + (k-1) * nij + (j-1) * ni + i

                  x_mean = sum(x(ijkv,1:num_members)) * num_members_inv

                  x_devn(1:num_members) = x(ijkv,1:num_members) - x_mean

!                 Calculate PfHT:
                  sigma_xh = sum( x_devn(1:num_members) * h_devn(1:num_members) ) * &amp;
                             num_members_inv1

!                 Apply covariance localization:
                  sigma_xh = sigma_xh * corr(i,j)

                  kalman_gain = sigma_xh * sigma_hh_inv

                  x_mean = x_mean + kalman_gain * o_minus_b

                  x_devn(1:num_members) = x_devn(1:num_members) - &amp;
                                          beta * kalman_gain * h_devn(1:num_members)

                  x(ijkv,1:num_members) = x_mean + x_devn(1:num_members)

               end do
            end do 
         end do
      end do
   end do

!---------------------------------------------------------------------------------------------
   write(6,'(/a)')' [4] Calculate diagnostics:' 
!---------------------------------------------------------------------------------------------

!  Calculate mean analysis over all grid-points (diagnostic only):

   allocate( xf_mean(1:nijkv) )
   allocate( xa_mean(1:nijkv) )

   do ijkv = 1, nijkv
      xf_mean(ijkv) = sum(xf(ijkv,1:num_members)) * num_members_inv
      xa_mean(ijkv) = sum(x(ijkv,1:num_members)) * num_members_inv
   end do

!  Calculate grid-point diagnostics:

!   call da_get_grid_stats( num_members, ni, nj, nk, nv, nijkv, nkk, varr, xf_cif, x )
   call da_get_grid_stats( num_members, ni, nj, nk, nv, nijkv, nkk, varr, xf, x )

!  Calculate observation diagnostics:

   write(53,*)num_obs
   do o = 1, num_obs

!     Ensemble mean-observation diagnostics:
      call da_obs_operator( nv, ni, nj, nkk, xstart, ob(o), xf_mean, hb_mean )
      call da_obs_operator( nv, ni, nj, nkk, xstart, ob(o), xa_mean, ha_mean )

      ob(o) % omb_mean = ob(o) % yo - hb_mean
      ob(o) % oma_mean = ob(o) % yo - ha_mean

!     Ensemble spread-observation diagnostics:
      sum_f = 0.0
      sum_a = 0.0
      do member = 1, num_members
!         call da_obs_operator( nv, ni, nj, nkk, xstart, ob(o), xf_cif(:,member), hf )
         call da_obs_operator( nv, ni, nj, nkk, xstart, ob(o), xf(:,member), hf )
         call da_obs_operator( nv, ni, nj, nkk, xstart, ob(o), x(:,member), ha )
         sum_f = sum_f + ( ob(o) % yo - hf )**2
         sum_a = sum_a + ( ob(o) % yo - ha )**2
      end do

      ob(o) % omb_rms = sqrt( sum_f * num_members_inv )
      ob(o) % oma_rms = sqrt( sum_a * num_members_inv )

      write(53,'(2a10,i8,10f16.8)')ob(o) % info % id, ob(o) % info % platform, &amp;
                ob(o) % info % variable, &amp;
                ob(o) % loc % x, ob(o) % loc % y ,ob(o) % loc % z, &amp;
                ob(o) % yo, ob(o) % omb_mean, ob(o) % oma_mean, &amp;
                ob(o) % omb_rms, ob(o) % oma_rms, &amp;
                ob(o) % sigma_o, ob(o) % sigma_b
   end do

!---------------------------------------------------------------------------------------------
   write(6,'(/a)')' [4] Output EnSRF analysis ensemble:'
!---------------------------------------------------------------------------------------------

   do member = 1, num_members
      write(6,'(a,i4)')'   Writing ensemble member increments for member', member
      write(UNIT=ce,FMT='(i3.3)')member

      do v = 1, nv

!        Output prior ensemble forecasts:
         output_file = trim(varr(v))//'/'//trim(varr(v))//'.prior.e'//trim(ce)
         open(unit, file = output_file, form='unformatted')
         write(unit)ni, nj, nkk(v)
         xend = xstart(v) + nij * nkk(v) - 1
         write(unit)xf(xstart(v):xend,member)
         close(unit)

!        Output posterior ensemble forecasts:
         output_file = trim(varr(v))//'/'//trim(varr(v))//'.posterior.e'//trim(ce)
         open(unit, file = output_file, form='unformatted')
         write(unit)ni, nj, nkk(v)
         xend = xstart(v) + nij * nkk(v) - 1
         write(unit)x(xstart(v):xend,member)
         close(unit)
      end do
   end do

   do v = 1, nv

!     Output prior ensemble forecasts:
      output_file = trim(varr(v))//'/'//trim(varr(v))//'.prior.mean'
      open(unit, file = output_file, form='unformatted')
      write(unit)ni, nj, nkk(v)
      xend = xstart(v) + nij * nkk(v) - 1
      write(unit)xf_mean(xstart(v):xend)
      close(unit)

!     Output posterior ensemble forecasts:
      output_file = trim(varr(v))//'/'//trim(varr(v))//'.posterior.mean'
      open(unit, file = output_file, form='unformatted')
      write(unit)ni, nj, nkk(v)
      xend = xstart(v) + nij * nkk(v) - 1
      write(unit)xa_mean(xstart(v):xend)
      close(unit)
   end do

   deallocate( ob )

contains

!-----------------------------------------------------------------------------

<A NAME='DA_OBS_OPERATOR'><A href='../../html_code/gen_be/gen_be_ensrf.f90.html#DA_OBS_OPERATOR' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>

subroutine da_obs_operator( nv, ni, nj, nkk, xstart, ob, x, h ) 5,1

   implicit none

   integer, intent(in)              :: nv, ni, nj
   integer, intent(in)              :: nkk(1:nv)
   integer, intent(in)              :: xstart(1:nv)
   type (ob_type), intent(in)       :: ob
   ! WHY? was this a target?
   ! real, intent(in), target         :: x(:)
   real, intent(in)                 :: x(:)
   real, intent(out)                :: h

   integer                          :: v, nk
   integer                          :: start
   real                             :: ob_x, ob_y, ob_z ! Observation location.

   v = ob % info % variable
   nk = nkk(v)
   start = xstart( v )

!  Perform 3D interpolation:

   ob_x = ob % loc % x
   ob_y = ob % loc % y
   ob_z = ob % loc % z

   call da_interpolate_3d( ni, nj, nk, ob % loc % x, ob % loc % y, ob % loc % z, &amp;
                           x(start:start + ni * nj * nk ), h )

end subroutine da_obs_operator

<A NAME='DA_INTERPOLATE_3D'><A href='../../html_code/gen_be/gen_be_ensrf.f90.html#DA_INTERPOLATE_3D' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>

subroutine da_interpolate_3d( ni, nj, nk, x, y, z, field, h ) 1

   implicit none
   integer, intent(in)   :: ni, nj, nk
   real, intent(in)      :: x, y, z      !  Grid location of point.
   real, intent(in)      :: field(1:ni,1:nj,1:nk) ! Field to interpolate.
   real, intent(out)     :: h            ! Interpolated value.

   integer               :: ii, jj, kk   ! Grid locators.
   real                  :: dx, dy, dz   ! Interpolation weights.
   real                  :: h1, h2       ! Interpolation values.
   real                  :: h_below      ! 2D interp values.
   real                  :: h_above      ! 2D interp values.

   ii = int(x)
   jj = int(y)
   kk = int(z)

   dx = x - real(ii)
   dy = y - real(jj)
   dz = z - real(kk)

!  2D interpolation on layer below:
   h1 = ( 1.0 - dx ) * field(ii,jj,kk)   + dx * field(ii+1,jj,kk)
   h2 = ( 1.0 - dx ) * field(ii,jj+1,kk) + dx * field(ii+1,jj+1,kk)
   h_below = ( 1.0 - dy ) * h1 + dy * h2

!  2D interpolation on layer above:
   h1 = ( 1.0 - dx ) * field(ii,jj,kk+1)   + dx * field(ii+1,jj,kk+1)
   h2 = ( 1.0 - dx ) * field(ii,jj+1,kk+1) + dx * field(ii+1,jj+1,kk+1)
   h_above = ( 1.0 - dy ) * h1 + dy * h2

!  Interpolation in vertical:
   h = ( 1.0 - dz ) * h_below + dz * h_above

end subroutine da_interpolate_3d

<A NAME='COMPACT_SUPPORT'><A href='../../html_code/gen_be/gen_be_ensrf.f90.html#COMPACT_SUPPORT' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>

subroutine compact_support( x1, x2, y1, y2, cov_loc_rad, corr ) 1

!  Compact support according to (4.10) of Gaspari and Cohn (1999).

!  Assumes r &gt;=0.

   implicit none

   real, intent(in)     :: x1, x2         ! x values of two points.
   real, intent(in)     :: y1, y2         ! y values of two points.
   real, intent(in)     :: cov_loc_rad    ! Cut-off correlation &gt; 2c.
   real, intent(out)    :: corr           ! Compactly-supported correlation.

   real                 :: z              ! Distance between points.
   real                 :: r              ! Ratio.
   real                 :: r2, r3, r4, r5 ! Powers of r.

   z = sqrt( ( x2 - x1 )**2 + ( y2 - y1)**2 )
   r = z / cov_loc_rad

   r2 = r * r
   r3 = r2 * r
   r4 = r3 * r
   r5 = r4 * r

   if ( r &lt;= 1.0 ) then
      corr = -0.25 * r5 + 0.5 * r4 + 0.625 * r3 - 5.0 * r2 / 3.0 + 1
   else if ( r &gt; 1.0 .and. r &lt; 2.0 ) then
      corr = r5 / 12.0 - 0.5 * r4 + 0.625 * r3 + 5.0 * r2 / 3.0 - &amp;
             5.0 * r + 4.0 - 2.0 / ( 3.0 * r )

   else if ( r &gt;= 2.0 ) then
      corr = 0.0
   end if

end subroutine compact_support

<A NAME='DA_GET_GRID_STATS'><A href='../../html_code/gen_be/gen_be_ensrf.f90.html#DA_GET_GRID_STATS' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>

subroutine da_get_grid_stats( num_members, ni, nj, nk, nv, nijkv, nkk, varr, xf, xa ) 1

   implicit none

   integer, intent(in)   :: num_members
   integer, intent(in)   :: ni
   integer, intent(in)   :: nj
   integer, intent(in)   :: nk
   integer, intent(in)   :: nv
   integer, intent(in)   :: nijkv
   integer, intent(in)   :: nkk(1:nv)
   character*10,intent(in):: varr(1:nv)
   real, intent(in)      :: xf(1:nijkv,1:num_members)
   real, intent(in)      :: xa(1:nijkv,1:num_members)

   character*10          :: name
   integer               :: v, k, j, i, ijkv
   real                  :: num_members_inv, nij_inv
   real                  :: mnsq_f, mnsq_a
   real                  :: domain_mean_f, domain_mean_a
   real                  :: domain_stdv_f, domain_stdv_a
   real                  :: mean_f(1:ni,1:nj), mean_a(1:ni,1:nj)
   real                  :: stdv_f(1:ni,1:nj), stdv_a(1:ni,1:nj)

   num_members_inv = 1.0 / num_members
   nij_inv = 1.0 / real ( ni * nj )

   write(6,'(a)')' Variable, Level,   Mean_F,   Mean_A,   StDv_F,   StdV_A'

   ijkv = 0
   do v = 1, nv
      name = varr(v)
      do k = 1, nkk(v)
         do j = 1, nj
            do i = 1, ni
               ijkv = ijkv + 1
               mean_f(i,j) = sum(xf(ijkv,1:num_members)) * num_members_inv
               mean_a(i,j) = sum(xa(ijkv,1:num_members)) * num_members_inv
               mnsq_f      = sum(xf(ijkv,1:num_members)**2) * num_members_inv
               mnsq_a      = sum(xa(ijkv,1:num_members)**2) * num_members_inv
               stdv_f(i,j) = mnsq_f - mean_f(i,j) * mean_f(i,j)
               stdv_a(i,j) = mnsq_a - mean_a(i,j) * mean_a(i,j)
               stdv_f(i,j) = 0.0
               if ( stdv_f(i,j) &gt; 0.0 ) stdv_f(i,j) = sqrt(stdv_f(i,j))
               stdv_a(i,j) = 0.0
               if ( stdv_a(i,j) &gt; 0.0 ) stdv_a(i,j) = sqrt(stdv_a(i,j))
            end do
         end do

         domain_mean_f = sum(mean_f(:,:)) * nij_inv
         domain_mean_a = sum(mean_a(:,:)) * nij_inv
         domain_stdv_f = sum(stdv_f(:,:)) * nij_inv
         domain_stdv_a = sum(stdv_a(:,:)) * nij_inv

         write(6,'(a,i6,4f16.8)')trim(name), k, domain_mean_f, domain_mean_a, &amp;
                                 domain_stdv_f, domain_stdv_a
      end do
   end do

end subroutine da_get_grid_stats

<A NAME='DA_COV_INFLATION'><A href='../../html_code/gen_be/gen_be_ensrf.f90.html#DA_COV_INFLATION' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>

subroutine da_cov_inflation( nijkv, num_members, cov_inf_fac, x ) 1

   implicit none

   integer, intent(in) :: nijkv
   integer, intent(in) :: num_members
   real, intent(in)    :: cov_inf_fac
   real, intent(inout) :: x(1:nijkv,1:num_members)

   integer             :: ijkv
   real                :: num_members_inv
   real                :: x_devn(1:num_members)

   num_members_inv = 1.0 / real(num_members)

   do ijkv = 1, nijkv
      x_mean = sum(x(ijkv,1:num_members)) * num_members_inv
      x_devn(1:num_members) = cov_inf_fac * ( x(ijkv,1:num_members) - x_mean )
      x(ijkv,1:num_members) = x_mean + x_devn(1:num_members)
   end do

end subroutine da_cov_inflation

end program gen_be_ensrf