DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E ) 2,2
!
!  -- LAPACK auxiliary routine (version 3.1) --
!     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
!     November 2006
!
!     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * )
!     ..
!
!  Purpose
!  =======
!
!  DLANST  returns the value of the one norm,  or the Frobenius norm, or
!  the  infinity norm,  or the  element of  largest absolute value  of a
!  real symmetric tridiagonal matrix A.
!
!  Description
!  ===========
!
!  DLANST returns the value
!
!     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!              (
!              ( norm1(A),         NORM = '1', 'O' or 'o'
!              (
!              ( normI(A),         NORM = 'I' or 'i'
!              (
!              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!
!  where  norm1  denotes the  one norm of a matrix (maximum column sum),
!  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!  normF  denotes the  Frobenius norm of a matrix (square root of sum of
!  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!
!  Arguments
!  =========
!
!  NORM    (input) CHARACTER*1
!          Specifies the value to be returned in DLANST as described
!          above.
!
!  N       (input) INTEGER
!          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
!          set to zero.
!
!  D       (input) DOUBLE PRECISION array, dimension (N)
!          The diagonal elements of A.
!
!  E       (input) DOUBLE PRECISION array, dimension (N-1)
!          The (n-1) sub-diagonal or super-diagonal elements of A.
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   ANORM, SCALE, SUM
!     ..
!     .. External Functions ..
!     LOGICAL            LSAME
!     EXTERNAL           LSAME
!     ..
!     .. External Subroutines ..
!     EXTERNAL           DLASSQ
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
!     ..
!     .. Executable Statements ..
!
      IF( N.LE.0 ) THEN
         ANORM = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
!
!        Find max(abs(A(i,j))).
!
         ANORM = ABS( D( N ) )
         DO 10 I = 1, N - 1
            ANORM = MAX( ANORM, ABS( D( I ) ) )
            ANORM = MAX( ANORM, ABS( E( I ) ) )
   10    CONTINUE
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR. &
               LSAME( NORM, 'I' ) ) THEN
!
!        Find norm1(A).
!
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ), &
                    ABS( E( N-1 ) )+ABS( D( N ) ) )
            DO 20 I = 2, N - 1
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+ &
                       ABS( E( I-1 ) ) )
   20       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
!
!        Find normF(A).
!
         SCALE = ZERO
         SUM = ONE
         IF( N.GT.1 ) THEN
            CALL DLASSQ( N-1, E, 1, SCALE, SUM )
            SUM = 2*SUM
         END IF
         CALL DLASSQ( N, D, 1, SCALE, SUM )
         ANORM = SCALE*SQRT( SUM )
      END IF
!
      DLANST = ANORM
      RETURN
!
!     End of DLANST
!
      END FUNCTION DLANST