SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) 4,6
!
! -- LAPACK auxiliary routine (version 3.1) --
! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
! November 2006
!
! .. Scalar Arguments ..
INTEGER INCX, N
DOUBLE PRECISION ALPHA, TAU
! ..
! .. Array Arguments ..
DOUBLE PRECISION X( * )
! ..
!
! Purpose
! =======
!
! DLARFG generates a real elementary reflector H of order n, such
! that
!
! H * ( alpha ) = ( beta ), H' * H = I.
! ( x ) ( 0 )
!
! where alpha and beta are scalars, and x is an (n-1)-element real
! vector. H is represented in the form
!
! H = I - tau * ( 1 ) * ( 1 v' ) ,
! ( v )
!
! where tau is a real scalar and v is a real (n-1)-element
! vector.
!
! If the elements of x are all zero, then tau = 0 and H is taken to be
! the unit matrix.
!
! Otherwise 1 <= tau <= 2.
!
! Arguments
! =========
!
! N (input) INTEGER
! The order of the elementary reflector.
!
! ALPHA (input/output) DOUBLE PRECISION
! On entry, the value alpha.
! On exit, it is overwritten with the value beta.
!
! X (input/output) DOUBLE PRECISION array, dimension
! (1+(N-2)*abs(INCX))
! On entry, the vector x.
! On exit, it is overwritten with the vector v.
!
! INCX (input) INTEGER
! The increment between elements of X. INCX > 0.
!
! TAU (output) DOUBLE PRECISION
! The value tau.
!
! =====================================================================
!
! .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
! ..
! .. Local Scalars ..
INTEGER J, KNT
DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM
! ..
! .. External Functions ..
! DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
! EXTERNAL DLAMCH, DLAPY2, DNRM2
! ..
! .. Intrinsic Functions ..
INTRINSIC ABS, SIGN
! ..
! .. External Subroutines ..
! EXTERNAL DSCAL
! ..
! .. Executable Statements ..
!
IF( N.LE.1 ) THEN
TAU = ZERO
RETURN
END IF
!
XNORM = DNRM2
( N-1, X, INCX )
!
IF( XNORM.EQ.ZERO ) THEN
!
! H = I
!
TAU = ZERO
ELSE
!
! general case
!
BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
SAFMIN = DLAMCH
( 'S' ) / DLAMCH( 'E' )
IF( ABS( BETA ).LT.SAFMIN ) THEN
!
! XNORM, BETA may be inaccurate; scale X and recompute them
!
RSAFMN = ONE / SAFMIN
KNT = 0
10 CONTINUE
KNT = KNT + 1
CALL DSCAL
( N-1, RSAFMN, X, INCX )
BETA = BETA*RSAFMN
ALPHA = ALPHA*RSAFMN
IF( ABS( BETA ).LT.SAFMIN ) &
GO TO 10
!
! New BETA is at most 1, at least SAFMIN
!
XNORM = DNRM2
( N-1, X, INCX )
BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
TAU = ( BETA-ALPHA ) / BETA
CALL DSCAL
( N-1, ONE / ( ALPHA-BETA ), X, INCX )
!
! If ALPHA is subnormal, it may lose relative accuracy
!
ALPHA = BETA
DO 20 J = 1, KNT
ALPHA = ALPHA*SAFMIN
20 CONTINUE
ELSE
TAU = ( BETA-ALPHA ) / BETA
CALL DSCAL
( N-1, ONE / ( ALPHA-BETA ), X, INCX )
ALPHA = BETA
END IF
END IF
!
RETURN
!
! End of DLARFG
!
END SUBROUTINE DLARFG