SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) 15,2
!
!  -- LAPACK auxiliary routine (version 3.1) --
!     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
!     November 2006
!
!     .. Scalar Arguments ..
      CHARACTER          TYPE
      INTEGER            INFO, KL, KU, LDA, M, N
      DOUBLE PRECISION   CFROM, CTO
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * )
!     ..
!
!  Purpose
!  =======
!
!  DLASCL multiplies the M by N real matrix A by the real scalar
!  CTO/CFROM.  This is done without over/underflow as long as the final
!  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
!  A may be full, upper triangular, lower triangular, upper Hessenberg,
!  or banded.
!
!  Arguments
!  =========
!
!  TYPE    (input) CHARACTER*1
!          TYPE indices the storage type of the input matrix.
!          = 'G':  A is a full matrix.
!          = 'L':  A is a lower triangular matrix.
!          = 'U':  A is an upper triangular matrix.
!          = 'H':  A is an upper Hessenberg matrix.
!          = 'B':  A is a symmetric band matrix with lower bandwidth KL
!                  and upper bandwidth KU and with the only the lower
!                  half stored.
!          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
!                  and upper bandwidth KU and with the only the upper
!                  half stored.
!          = 'Z':  A is a band matrix with lower bandwidth KL and upper
!                  bandwidth KU.
!
!  KL      (input) INTEGER
!          The lower bandwidth of A.  Referenced only if TYPE = 'B',
!          'Q' or 'Z'.
!
!  KU      (input) INTEGER
!          The upper bandwidth of A.  Referenced only if TYPE = 'B',
!          'Q' or 'Z'.
!
!  CFROM   (input) DOUBLE PRECISION
!  CTO     (input) DOUBLE PRECISION
!          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
!          without over/underflow if the final result CTO*A(I,J)/CFROM
!          can be represented without over/underflow.  CFROM must be
!          nonzero.
!
!  M       (input) INTEGER
!          The number of rows of the matrix A.  M >= 0.
!
!  N       (input) INTEGER
!          The number of columns of the matrix A.  N >= 0.
!
!  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
!          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
!          storage type.
!
!  LDA     (input) INTEGER
!          The leading dimension of the array A.  LDA >= max(1,M).
!
!  INFO    (output) INTEGER
!          0  - successful exit
!          <0 - if INFO = -i, the i-th argument had an illegal value.
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
!     ..
!     .. Local Scalars ..
      LOGICAL            DONE
      INTEGER            I, ITYPE, J, K1, K2, K3, K4
      DOUBLE PRECISION   BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
!     ..
!     .. External Functions ..
!     LOGICAL            LSAME
!     DOUBLE PRECISION   DLAMCH
!     EXTERNAL           LSAME, DLAMCH
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
!     ..
!     .. External Subroutines ..
!     EXTERNAL           XERBLA
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
!
      IF( LSAME( TYPE, 'G' ) ) THEN
         ITYPE = 0
      ELSE IF( LSAME( TYPE, 'L' ) ) THEN
         ITYPE = 1
      ELSE IF( LSAME( TYPE, 'U' ) ) THEN
         ITYPE = 2
      ELSE IF( LSAME( TYPE, 'H' ) ) THEN
         ITYPE = 3
      ELSE IF( LSAME( TYPE, 'B' ) ) THEN
         ITYPE = 4
      ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
         ITYPE = 5
      ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
         ITYPE = 6
      ELSE
         ITYPE = -1
      END IF
!
      IF( ITYPE.EQ.-1 ) THEN
         INFO = -1
      ELSE IF( CFROM.EQ.ZERO ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR. &
               ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
         INFO = -7
      ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSE IF( ITYPE.GE.4 ) THEN
         IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
            INFO = -2
         ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR. &
                  ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) ) &
                   THEN
            INFO = -3
         ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR. &
                  ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR. &
                  ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
            INFO = -9
         END IF
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASCL', -INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.EQ.0 .OR. M.EQ.0 ) &
         RETURN
!
!     Get machine parameters
!
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
!
      CFROMC = CFROM
      CTOC = CTO
!
   10 CONTINUE
      CFROM1 = CFROMC*SMLNUM
      CTO1 = CTOC / BIGNUM
      IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
         MUL = SMLNUM
         DONE = .FALSE.
         CFROMC = CFROM1
      ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
         MUL = BIGNUM
         DONE = .FALSE.
         CTOC = CTO1
      ELSE
         MUL = CTOC / CFROMC
         DONE = .TRUE.
      END IF
!
      IF( ITYPE.EQ.0 ) THEN
!
!        Full matrix
!
         DO 30 J = 1, N
            DO 20 I = 1, M
               A( I, J ) = A( I, J )*MUL
   20       CONTINUE
   30    CONTINUE
!
      ELSE IF( ITYPE.EQ.1 ) THEN
!
!        Lower triangular matrix
!
         DO 50 J = 1, N
            DO 40 I = J, M
               A( I, J ) = A( I, J )*MUL
   40       CONTINUE
   50    CONTINUE
!
      ELSE IF( ITYPE.EQ.2 ) THEN
!
!        Upper triangular matrix
!
         DO 70 J = 1, N
            DO 60 I = 1, MIN( J, M )
               A( I, J ) = A( I, J )*MUL
   60       CONTINUE
   70    CONTINUE
!
      ELSE IF( ITYPE.EQ.3 ) THEN
!
!        Upper Hessenberg matrix
!
         DO 90 J = 1, N
            DO 80 I = 1, MIN( J+1, M )
               A( I, J ) = A( I, J )*MUL
   80       CONTINUE
   90    CONTINUE
!
      ELSE IF( ITYPE.EQ.4 ) THEN
!
!        Lower half of a symmetric band matrix
!
         K3 = KL + 1
         K4 = N + 1
         DO 110 J = 1, N
            DO 100 I = 1, MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  100       CONTINUE
  110    CONTINUE
!
      ELSE IF( ITYPE.EQ.5 ) THEN
!
!        Upper half of a symmetric band matrix
!
         K1 = KU + 2
         K3 = KU + 1
         DO 130 J = 1, N
            DO 120 I = MAX( K1-J, 1 ), K3
               A( I, J ) = A( I, J )*MUL
  120       CONTINUE
  130    CONTINUE
!
      ELSE IF( ITYPE.EQ.6 ) THEN
!
!        Band matrix
!
         K1 = KL + KU + 2
         K2 = KL + 1
         K3 = 2*KL + KU + 1
         K4 = KL + KU + 1 + M
         DO 150 J = 1, N
            DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  140       CONTINUE
  150    CONTINUE
!
      END IF
!
      IF( .NOT.DONE ) &
         GO TO 10
!
      RETURN
!
!     End of DLASCL
!
      END SUBROUTINE DLASCL