SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) 4,1
!
!  -- LAPACK auxiliary routine (version 3.1) --
!     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
!     November 2006
!
!     .. Scalar Arguments ..
      CHARACTER          DIRECT, PIVOT, SIDE
      INTEGER            LDA, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( * ), S( * )
!     ..
!
!  Purpose
!  =======
!
!  DLASR applies a sequence of plane rotations to a real matrix A,
!  from either the left or the right.
!  
!  When SIDE = 'L', the transformation takes the form
!  
!     A := P*A
!  
!  and when SIDE = 'R', the transformation takes the form
!  
!     A := A*P**T
!  
!  where P is an orthogonal matrix consisting of a sequence of z plane
!  rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
!  and P**T is the transpose of P.
!  
!  When DIRECT = 'F' (Forward sequence), then
!  
!     P = P(z-1) * ... * P(2) * P(1)
!  
!  and when DIRECT = 'B' (Backward sequence), then
!  
!     P = P(1) * P(2) * ... * P(z-1)
!  
!  where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
!  
!     R(k) = (  c(k)  s(k) )
!          = ( -s(k)  c(k) ).
!  
!  When PIVOT = 'V' (Variable pivot), the rotation is performed
!  for the plane (k,k+1), i.e., P(k) has the form
!  
!     P(k) = (  1                                            )
!            (       ...                                     )
!            (              1                                )
!            (                   c(k)  s(k)                  )
!            (                  -s(k)  c(k)                  )
!            (                                1              )
!            (                                     ...       )
!            (                                            1  )
!  
!  where R(k) appears as a rank-2 modification to the identity matrix in
!  rows and columns k and k+1.
!  
!  When PIVOT = 'T' (Top pivot), the rotation is performed for the
!  plane (1,k+1), so P(k) has the form
!  
!     P(k) = (  c(k)                    s(k)                 )
!            (         1                                     )
!            (              ...                              )
!            (                     1                         )
!            ( -s(k)                    c(k)                 )
!            (                                 1             )
!            (                                      ...      )
!            (                                             1 )
!  
!  where R(k) appears in rows and columns 1 and k+1.
!  
!  Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
!  performed for the plane (k,z), giving P(k) the form
!  
!     P(k) = ( 1                                             )
!            (      ...                                      )
!            (             1                                 )
!            (                  c(k)                    s(k) )
!            (                         1                     )
!            (                              ...              )
!            (                                     1         )
!            (                 -s(k)                    c(k) )
!  
!  where R(k) appears in rows and columns k and z.  The rotations are
!  performed without ever forming P(k) explicitly.
!
!  Arguments
!  =========
!
!  SIDE    (input) CHARACTER*1
!          Specifies whether the plane rotation matrix P is applied to
!          A on the left or the right.
!          = 'L':  Left, compute A := P*A
!          = 'R':  Right, compute A:= A*P**T
!
!  PIVOT   (input) CHARACTER*1
!          Specifies the plane for which P(k) is a plane rotation
!          matrix.
!          = 'V':  Variable pivot, the plane (k,k+1)
!          = 'T':  Top pivot, the plane (1,k+1)
!          = 'B':  Bottom pivot, the plane (k,z)
!
!  DIRECT  (input) CHARACTER*1
!          Specifies whether P is a forward or backward sequence of
!          plane rotations.
!          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
!          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
!
!  M       (input) INTEGER
!          The number of rows of the matrix A.  If m <= 1, an immediate
!          return is effected.
!
!  N       (input) INTEGER
!          The number of columns of the matrix A.  If n <= 1, an
!          immediate return is effected.
!
!  C       (input) DOUBLE PRECISION array, dimension
!                  (M-1) if SIDE = 'L'
!                  (N-1) if SIDE = 'R'
!          The cosines c(k) of the plane rotations.
!
!  S       (input) DOUBLE PRECISION array, dimension
!                  (M-1) if SIDE = 'L'
!                  (N-1) if SIDE = 'R'
!          The sines s(k) of the plane rotations.  The 2-by-2 plane
!          rotation part of the matrix P(k), R(k), has the form
!          R(k) = (  c(k)  s(k) )
!                 ( -s(k)  c(k) ).
!
!  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
!          The M-by-N matrix A.  On exit, A is overwritten by P*A if
!          SIDE = 'R' or by A*P**T if SIDE = 'L'.
!
!  LDA     (input) INTEGER
!          The leading dimension of the array A.  LDA >= max(1,M).
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, INFO, J
      DOUBLE PRECISION   CTEMP, STEMP, TEMP
!     ..
!     .. External Functions ..
!     LOGICAL            LSAME
!     EXTERNAL           LSAME
!     ..
!     .. External Subroutines ..
!     EXTERNAL           XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters
!
      INFO = 0
      IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
         INFO = 1
      ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT, &
               'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
         INFO = 2
      ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) ) &
                THEN
         INFO = 3
      ELSE IF( M.LT.0 ) THEN
         INFO = 4
      ELSE IF( N.LT.0 ) THEN
         INFO = 5
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = 9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASR ', INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) &
         RETURN
      IF( LSAME( SIDE, 'L' ) ) THEN
!
!        Form  P * A
!
         IF( LSAME( PIVOT, 'V' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 20 J = 1, M - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 10 I = 1, N
                        TEMP = A( J+1, I )
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
   10                CONTINUE
                  END IF
   20          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 40 J = M - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 30 I = 1, N
                        TEMP = A( J+1, I )
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
   30                CONTINUE
                  END IF
   40          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 60 J = 2, M
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 50 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
   50                CONTINUE
                  END IF
   60          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 80 J = M, 2, -1
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 70 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
   70                CONTINUE
                  END IF
   80          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 100 J = 1, M - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 90 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
   90                CONTINUE
                  END IF
  100          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 120 J = M - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 110 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  110                CONTINUE
                  END IF
  120          CONTINUE
            END IF
         END IF
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
!
!        Form A * P'
!
         IF( LSAME( PIVOT, 'V' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 140 J = 1, N - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 130 I = 1, M
                        TEMP = A( I, J+1 )
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  130                CONTINUE
                  END IF
  140          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 160 J = N - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 150 I = 1, M
                        TEMP = A( I, J+1 )
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  150                CONTINUE
                  END IF
  160          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 180 J = 2, N
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 170 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  170                CONTINUE
                  END IF
  180          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 200 J = N, 2, -1
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 190 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  190                CONTINUE
                  END IF
  200          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 220 J = 1, N - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 210 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  210                CONTINUE
                  END IF
  220          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 240 J = N - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 230 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  230                CONTINUE
                  END IF
  240          CONTINUE
            END IF
         END IF
      END IF
!
      RETURN
!
!     End of DLASR
!
      END SUBROUTINE DLASR