<HTML> <BODY BGCOLOR=#ccccdd LINK=#0000aa VLINK=#0000ff ALINK=#ff0000 ><BASE TARGET="bottom_target"><PRE>
<A NAME='LANDEM'><A href='../../html_code/radiance/landem.inc.html#LANDEM' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine landem(theta,freq,mv,veg_frac,veg_tp,soil_tp, & 2,14
t_soil,t_skin,snow_depth,esh,esv)
!$$$ subprogram documentation block
! . . . .
! subprogram: landem noaa/nesdis emissivity model over land/ice
!
! prgmmr: Fuzhong Weng org: nesdis date: 2000-11-28
! Banghua Yan
!
! abstract: noaa/nesdis emissivity model to compute microwave emissivity over
! various land surface conditions (land/snow)
!
! reference: weng, f, b. yan, and n. grody, 2001:
! "A microwave land emissivity model", J. Geophys. Res., 106,
! 20, 115-20, 123
!
! version: beta
!
! program history log:
! 1999-07-01 weng
! 2000-01-01 yan - add canopy scattering
! 2000-11-28 weng,yan - parameterize model input and incorporate into NCEP ssi
! 2004-08-04 treadon - add only on use declarations; add intent in/out
! 2004-09-22 todling - replaced zsqrt by general interface sqrt
!
! input argument list:
!
! theta - local zenith angle (0 - 60.0)
! freq - frequency in ghz ( 0 - 90.0)
! mv - volumetric moisture content in soil (0.0 - 1.0) (gdas)
! veg_frac - vegetation fraction (0 - 1.0) (gdas)
! veg_tp - vegetation type (gdas, not used)
! 1: broadleave evergreen trees
! 2: broadleave deciduous trees
! 3: broad & needle mixed forest
! 4: needleleave evergreen trees
! 5: needleleave deciduous trees
! 6: broadleave tree with groundcover (savana)
! 7: groundcover only (perenial groundcover)
! 8: broadleave shrubs with perenial groundcover
! 9: broadleave shrubs with bare soil
! 10: dwarf trees & shrubs with bare soil
! 11: bare soil'
! 12: cultivations (use paramater 7)
! 13: glacial
!
! soil_tp - soil type (gdas, not used)
! 1: loamy sand (coarse)
! 2: silty clayloam (medium)
! 3: light clay (fine)
! 4: sand loam (coarse-medium)
! 5: sandy clay (coarse-fine)
! 6: clay loam (medium-fine)
! 7: sandy clay loam (coarse-med-fine)
! 8: loam (organic)
! 9: ice (use loamy sand property)
!
! t_soil - soil temperature (k) (gdas)
! t_skin - scattering layer temperature (k) (gdas)
! snow_depth - scatter medium depth (mm) (gdas)
!
!
! output argument list:
!
! esh - emissivity for horizontal polarization
! esv - emissivity for vertical polarization
!
! important internal variables:
!
! rhob - bulk volume density of the soil (1.18-1.12)
! rhos - density of the solids (2.65 g.cm^3 for solid soil material)
! sand - sand fraction (sand + clay = 1.0)
! clay - clay fraction
! lai - leaf area index (eg. lai = 4.0 for corn leaves)
! sigma - surface roughness formed between medium 1 and 2,
! expressed as he standard deviation of roughtness height (mm)
! leaf_thick -- leaf thickness (mm)
! rad - radius of dense medium scatterers (mm)
! va - fraction volume of dense medium scatterers(0.0 - 1.0)
! ep - dielectric constant of ice or sand particles, complex value
! (e.g, 3.0+i0.0)
!
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: zero,one_tenth,half,one,three
implicit none
! Declare passed variables
real(r_kind),intent(in):: theta,freq,mv,veg_frac,veg_tp,soil_tp,&
t_soil,t_skin,snow_depth
real(r_kind),intent(out):: esh,esv
! Declare local parameters
real(r_kind),parameter:: rhob=1.18_r_kind
real(r_kind),parameter:: rhos = 2.65_r_kind
real(r_kind),parameter:: sand = 0.8_r_kind
real(r_kind),parameter:: clay = 0.2_r_kind
! Declare local variables
real(r_kind) b,theta_i,theta_t,mu,r12_h,r12_v,r21_h,r21_v,r23_h,r23_v, &
t21_v,t21_h,t12_v,t12_h,gv,gh,ssalb_h,ssalb_v,tau_h,tau_v,mge,&
lai,leaf_thick,rad,sigma,va,ep_real,ep_imag
complex(r_kind) esoil, eveg, esnow, eair
eair = dcmplx(one,-zero)
! if (snow_depth .gt.zero) then
if (snow_depth .gt.one_tenth) then
! ice dielectric constant
ep_real = 3.2_r_kind
ep_imag = -0.0005_r_kind
sigma = one
va = 0.4_r_kind + 0.0004_r_kind*snow_depth
rad = one + 0.005_r_kind*snow_depth
call snow_diel
(freq, ep_real, ep_imag, rad, va, esnow)
call soil_diel
(freq, t_soil, mv, rhob, rhos, sand, clay, esoil)
! theta_t = dasin(dreal(sin(theta)*sqrt(eair)/sqrt(esnow)))
! call reflectance(eair, esnow, theta, theta_t, r12_v, r12_h)
! call transmitance(eair, esnow, theta, theta_t, t12_v, t12_h)
theta_i = asin(real(sin(theta)*sqrt(eair)/sqrt(esnow)))
call reflectance
(esnow, eair, theta_i, theta, r21_v, r21_h)
call transmitance
(esnow, eair, theta_i, theta, t21_v, t21_h)
mu = cos(theta_i)
theta_t = asin(real(sin(theta_i)*sqrt(esnow)/sqrt(esoil)))
call reflectance
(esnow, esoil, theta_i, theta_t, r23_v, r23_h)
call rough_reflectance
(freq, theta_i, sigma, r23_v, r23_h)
call snow_optic
(freq,rad,snow_depth,va,ep_real, ep_imag,gv,gh,&
ssalb_v,ssalb_h,tau_v,tau_h)
call two_stream_solution
(t_skin,mu,gv,gh,ssalb_h,ssalb_v,tau_h,tau_v,r12_h, &
r12_v,r21_h,r21_v,r23_h,r23_v,t21_v,t21_h,t12_v,t12_h,esv,esh)
else
sigma = half
lai = three*veg_frac + half
mge = half*veg_frac
leaf_thick = 0.07_r_kind
mu = cos(theta)
! r12_h = zero
! r12_v = zero
r21_h = zero
r21_v = zero
t21_h = one
t21_v = one
! t12_v = one
! t12_h = one
call soil_diel
(freq, t_soil, mv, rhob, rhos, sand, clay, esoil)
theta_t = asin(real(sin(theta)*sqrt(eair)/sqrt(esoil)))
call reflectance
(eair, esoil, theta, theta_t, r23_v, r23_h)
call rough_reflectance
(freq, theta, sigma, r23_v, r23_h)
call canopy_diel
(freq, mge, eveg)
call canopy_optic
(lai,freq,theta,eveg,leaf_thick,gv,gh,ssalb_v,ssalb_h,tau_v,tau_h)
call two_stream_solution
(t_skin,mu,gv,gh,ssalb_h,ssalb_v,tau_h,tau_v,&
r12_h,r12_v,r21_h,r21_v,r23_h,r23_v,t21_v,t21_h,t12_v,t12_h,esv,esh)
endif
return
end subroutine landem
<A NAME='CANOPY_OPTIC'><A href='../../html_code/radiance/landem.inc.html#CANOPY_OPTIC' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine canopy_optic(lai,frequency,theta,esv,d,gv,gh,& 3
ssalb_v,ssalb_h,tau_v, tau_h)
!$$$ subprogram documentation block
! . . . .
! subprogram: canopy_optic compute optic parameters for canopy
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute optic parameters for canopy
!
! program history log:
! 2004-09-22 todling - replaced zsqrt by general interface sqrt; same for zexp/exp
!
! input argument list:
!
! lai - leaf area index
! frequency - frequency (ghz)
! theta - incident angle
! esv - leaf dielectric constant
! d - leaf thickness (mm)
!
! output argument list:
!
! gv - asymmetry factor for v pol
! gh - asymmetry factor for h pol
! ssalb_v - single scattering albedo at v. polarization
! ssalb_h - single scattering albedo at h. polarization
! tau_v - optical depth at v. polarization
! tau_h - optical depth at h. polarization
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: zero, half, one, two, four, pi
implicit none
real(r_kind) threshold
real(r_kind) frequency,theta,d,lai,ssalb_v,ssalb_h,tau_v,tau_h,gv, gh, mu
complex(r_kind) ix,k0,kz0,kz1,rhc,rvc,esv,expval1,factt,factrvc,factrhc
real(r_kind) rh,rvert,th,tv,av,ah,astar,rstar
threshold=0.999_r_kind
mu = cos(theta)
ix = dcmplx(zero,one)
k0 = dcmplx(two*pi*frequency/300.0_r_kind, zero) ! 1/mm
kz0 = k0*mu
kz1 = k0*sqrt(esv - sin(theta)**2)
rhc = (kz0 - kz1)/(kz0 + kz1)
rvc = (esv*kz0 - kz1)/(esv*kz0 + kz1)
expval1=exp(-two*ix*kz1*d)
factrvc=one-rvc**2*expval1
factrhc=one-rhc**2*expval1
factt=four*kz0*kz1*exp(ix*(kz0-kz1)*d)
rvert = abs(rvc*(one - expval1)/factrvc)**2
rh = abs(rhc*(one - expval1)/factrhc)**2
th = abs(factt/((kz1+kz0)**2*factrhc))**2
tv = abs(esv*factt/((kz1+esv*kz0)**2*factrvc))**2
! av = one - rvert - tv
! ah = one - rh - th
! astar = av + ah
! rstar = rvert + rh
! randomly oriented leaves
gv = half
gh = half
! tau_v = half*lai*(astar + rstar)
tau_v = half*lai*(two-tv-th)
tau_h = tau_v
! tau_h = half*lai*(astar + rstar)
! ssalb_v = rstar/ (astar + rstar)
ssalb_v = min((rvert+rh)/ (two-tv-th),threshold)
ssalb_h = ssalb_v
! ssalb_h = rstar/ (astar + rstar)
return
end subroutine canopy_optic
<A NAME='SNOW_OPTIC'><A href='../../html_code/radiance/landem.inc.html#SNOW_OPTIC' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine snow_optic(frequency,a,h,f,ep_real,ep_imag,gv,gh,& 3
ssalb_v,ssalb_h,tau_v,tau_h)
!$$$ subprogram documentation block
! . . . .
! subprogram: landem comput optic parameters for snow
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute optic parameters for snow
!
! program history log:
!
! input argument list:
!
! theta - local zenith angle (degree)
! frequency - frequency (ghz)
! ep_real - real part of dielectric constant of particles
! ep_imag - imaginary part of dielectric constant of particles
! a - particle radiu (mm)
! h - snow depth(mm)
! f - fraction volume of snow (0.0 - 1.0)
!
! output argument list:
!
! ssalb - single scattering albedo
! tau - optical depth
! g - asymmetry factor
!
! important internal variables:
!
! ks - scattering coeffcient (/mm)
! ka - absorption coeffient (/mm)
! kp - eigenvalue of two-stream approximation
! y - = yr+iyi
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: half, one, two, three, pi
implicit none
real(r_kind) yr,yi,ep_real,ep_imag
real(r_kind) frequency,a,h,f,ssalb_v,ssalb_h,tau_v,tau_h,gv,gh,k
real(r_kind) ks1,ks2,ks3,ks,kr1,kr2,kr3,kr,ki1,ki2,ki3,ki,ka
real(r_kind) fact1,fact2,fact3,fact4,fact5
k = two*pi/(300._r_kind/frequency)
yr = (ep_real - one)/(ep_real + two)
yi = - ep_imag/(ep_real + two)
fact1 = (one+two*f)**2
fact2 = one-f*yr
fact3 = (one-f)**4
fact4 = f*(k*a)**3
fact5 = one+two*f*yr
ks1 = k*sqrt(fact2/fact5)
ks2 = fact4*fact3/fact1
ks3 = (yr/fact2)**2
ks = ks1*ks2*ks3
kr1 = fact5/fact2
! kr2 = two*fact4*fact3/fact1
kr2 = two*ks2
kr3 = two*yi*yr/(fact2**3)
kr = k*sqrt(kr1+kr2*kr3)
ki1 = three*f*yi/fact2**2
! ki2 = two*fact4*fact3/fact1
ki2 = kr2
! ki3 = (yr/fact2)**2
ki3 = ks3
ki = k**2/(two*kr)*(ki1+ki2*ki3)
! ka = ki - ks
gv = half
gh = half
ssalb_v = ks / ki
if(ssalb_v .gt. 0.999_r_kind) ssalb_v = 0.999_r_kind
ssalb_h = ssalb_v
tau_v = two*ki*h
tau_h = tau_v
return
end subroutine snow_optic
<A NAME='SOIL_DIEL'><A href='../../html_code/radiance/landem.inc.html#SOIL_DIEL' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine soil_diel(freq,t_soil,vmc,rhob,rhos,sand,clay,esm) 6
!$$$ subprogram documentation block
! . . . .
! subprogram: soil_diel calculate the dielectric properties of soil
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute the dilectric constant of the bare soil
!
! program history log:
!
! input argument list:
!
! theta - local zenith angle (degree)
! frequency - frequency (ghz)
! t_soil - soil temperature
! vmc - volumetric moisture content (demensionless)
! rhob - bulk volume density of the soil (1.18-1.12)
! rhos - density of the solids (2.65 g.cm^3 for
! solid soil material)
! sand - sand fraction (sand + clay = 1.0)
! clay - clay fraction
!
! output argument list:
!
! esm - dielectric constant for bare soil
!
! important internal variables:
!
! esof - the permittivity of free space
! eswo - static dieletric constant
! tauw - relaxation time of water
! s - salinity
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: zero, one, two, pi
implicit none
real(r_kind) esof
real(r_kind) f,a,b,tauw,freq,t_soil,vmc,rhob,rhos,sand,clay
real(r_kind) s,alpha,beta,ess,rhoef,t,eswi,eswo
complex(r_kind) ix,esm,esw,es1,es2
!
!
! ix = dcmplx(zero, one)
! s = zero
alpha = 0.65_r_kind
beta = 1.09_r_kind - 0.11_r_kind*sand + 0.18_r_kind*clay
ess = (1.01_r_kind + 0.44_r_kind*rhos)**2 - 0.062_r_kind !a2
rhoef = -1.645_r_kind + 1.939_r_kind*rhob - 0.020213_r_kind*sand + 0.01594_r_kind*clay !a4
t = t_soil - t_landem
f = freq*1.0e9_r_kind
! the permittivity at the high frequency limit
eswi = 5.5_r_kind
! the permittivity of free space (esof)
esof = 8.854e-12_r_kind
! static dieletric constant (eswo)
eswo = 87.134_r_kind+(-1.949e-1_r_kind+(-1.276e-2_r_kind+2.491e-4_r_kind*t)*t)*t
! a = one+(1.613e-5_r_kind*t-3.656e-3_r_kind+(3.210e-5_r_kind-4.232e-7_r_kind*s)*s)*s
! eswo = eswo*a
! relaxation time of water (tauw)
tauw = 1.1109e-10_r_kind+(-3.824e-12_r_kind+(6.938e-14_r_kind-5.096e-16_r_kind*t)*t)*t
! b = one+(2.282e-5_r_kind*t-7.638e-4_r_kind+(-7.760e-6_r_kind+1.105e-8_r_kind*s)*s)*s
! tauw = tauw*b
if (vmc .gt. zero) then
es1 = dcmplx(eswi, - rhoef *(rhos - rhob)/(two*pi*f*esof*rhos*vmc))
else
es1 = dcmplx(eswi, zero)
endif
es2 = dcmplx(eswo - eswi,zero)/dcmplx(one, f*tauw)
esw = es1 + es2
esm = one + (ess**alpha - one)*rhob/rhos + vmc**beta*esw**alpha - vmc
esm = esm**(one/alpha)
if(imag(esm) .ge.zero) esm = dcmplx(real(esm), -0.0001_r_kind)
return
end subroutine soil_diel
!
<A NAME='SNOW_DIEL'><A href='../../html_code/radiance/landem.inc.html#SNOW_DIEL' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine snow_diel(frequency,ep_real,ep_imag,rad,frac,ep_eff) 3
!$$$ subprogram documentation block
! . . . .
! subprogram: snow_diel compute dielectric constant of snow
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute dielectric constant of snow
!
!
! program history log:
!
! input argument list:
!
! frequency - frequency (ghz)
! ep_real - real part of dielectric constant of particle
! ep_imag - imaginary part of dielectric constant of particle
! rad - particle radiu (mm)
! frac - fraction volume of snow (0.0 - 1.0)
!
! output argument list:
!
! ep_eff - dielectric constant of the dense medium
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: zero, one, two, pi
implicit none
real(r_kind) ep_imag,ep_real
real(r_kind) frequency,rad,frac,k0,yr,yi
complex(r_kind) y,ep_r,ep_i,ep_eff,fracy
k0 = two*pi/(300.0_r_kind/frequency)
yr = (ep_real - one)/(ep_real + two)
yi = ep_imag/(ep_real + two)
y = dcmplx(yr, yi)
fracy=frac*y
ep_r = (one + two*fracy)/(one - fracy)
ep_i = two*fracy*y*(k0*rad)**3*(one-frac)**4/((one-fracy)**2*(one+two*frac)**2)
ep_eff = ep_r - dcmplx(zero,one)*ep_i
if (imag(ep_eff).ge.zero) ep_eff = dcmplx(real(ep_eff), -0.0001_r_kind)
return
end subroutine snow_diel
<A NAME='CANOPY_DIEL'><A href='../../html_code/radiance/landem.inc.html#CANOPY_DIEL' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine canopy_diel(frequency,mg,esv) 3
!
!$$$ subprogram documentation block
! . . . .
! subprogram: canopy_diel compute the dielectric constant of the vegetation canopy
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute the dielectric constant of the vegetation canopy
! geomatrical optics approximation for vegetation canopy
! work for horizontal leaves
!
! program history log:
! 2004-09-22 todling - replaced zsqrt by general interface sqrt
!
! input argument list:
!
! frequency - frequency (ghz)
! mg - gravimetric water content
!
! output argument list:
!
! esv - dielectric constant of leaves
!
! remarks:
!
! references:
!
! ulaby and el-rayer, 1987: microwave dielectric spectrum of vegetation part ii,
! dual-dispersion model, ieee trans geosci. remote sensing, 25, 550-557
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: zero, one
implicit none
real(r_kind) frequency, mg, en, vf, vb
complex(r_kind) esv, xx
en = 1.7_r_kind - (0.74_r_kind - 6.16_r_kind*mg)*mg
vf = mg*(0.55_r_kind*mg - 0.076_r_kind)
vb = 4.64_r_kind*mg*mg/( one + 7.36_r_kind*mg*mg)
xx = dcmplx(zero,one)
esv = en + vf*(4.9_r_kind + 75.0_r_kind/(one + xx*frequency/18.0_r_kind)-xx*(18.0_r_kind/frequency)) + &
vb*(2.9_r_kind + 55.0_r_kind/(one + sqrt(xx*frequency/0.18_r_kind)))
if (imag(esv).ge.zero) esv = dcmplx(real(esv), -0.0001_r_kind)
return
end subroutine canopy_diel
<A NAME='REFLECTANCE'><A href='../../html_code/radiance/landem.inc.html#REFLECTANCE' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine reflectance(em1, em2, theta_i, theta_t, rvert, rh) 10
!$$$ subprogram documentation block
! . . . .
! subprogram: reflectance compute the surface reflectivity
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute the surface reflectivety using fresnel equations
! for a rough surface having a standard deviation of height of sigma
!
! program history log:
! 2004-09-22 todling - replaced zsqrt by general interface sqrt; same for zabs/abs
!
! input argument list:
! theta_i - incident angle (degree)
! theta_t - transmitted angle (degree)
! em1 - dielectric constant of the medium 1
! em2 - dielectric constant of the medium 2
!
! output argument list:
!
! rvert - reflectivity at vertical polarization
! rh - reflectivity at horizontal polarization
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: zero
implicit none
real(r_kind) theta_i, theta_t
real(r_kind) rh, rvert,cos_i,cos_t
complex(r_kind) em1, em2, m1, m2, angle_i, angle_t
! compute the refractive index ratio between medium 2 and 1
! using dielectric constant (n = sqrt(e))
cos_i=cos(theta_i)
cos_t=cos(theta_t)
angle_i = dcmplx(cos_i, zero)
angle_t = dcmplx(cos_t, zero)
m1 = sqrt(em1)
m2 = sqrt(em2)
rvert = (abs((m1*angle_t-m2*angle_i)/(m1*angle_t+m2*angle_i)))**2
rh = (abs((m1*angle_i-m2*angle_t)/(m1*angle_i+m2*angle_t)))**2
return
end subroutine reflectance
<A NAME='TRANSMITANCE'><A href='../../html_code/radiance/landem.inc.html#TRANSMITANCE' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine transmitance(em1,em2,theta_i,theta_t,tv,th) 3
!
!$$$ subprogram documentation block
! . . . .
! subprogram: transmitance calculate transmitance
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute transmitance
!
! program history log:
! 2004-09-22 todling - replaced zsqrt by general interface sqrt; same for zabs/abs
!
! input argument list:
!
! theta - local zenith angle (degree)
! theta_i - incident angle (degree)
! theta_t - transmitted angle (degree)
! em1 - dielectric constant of the medium 1
! em2 - dielectric constant of the medium 2
!
! output argument list:
!
! tv - transmisivity at vertical polarization
! th - transmisivity at horizontal polarization
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: zero, two
implicit none
real(r_kind) theta_i, theta_t
!
real(r_kind) th, tv, rr, cos_i,cos_t
!
complex(r_kind) em1, em2, m1, m2, angle_i, angle_t
! compute the refractive index ratio between medium 2 and 1
! using dielectric constant (n = sqrt(e))
cos_i=cos(theta_i)
cos_t=cos(theta_t)
angle_i = dcmplx(cos_i, zero)
angle_t = dcmplx(cos_t, zero)
m1 = sqrt(em1)
m2 = sqrt(em2)
rr = abs(m2/m1)*cos_t/cos_i
tv = rr*(abs(two*m1*angle_i/(m1*angle_t + m2*angle_i)))**2
th = rr*(abs(two*m1*angle_i/(m1*angle_i + m2*angle_t)))**2
return
end subroutine transmitance
<A NAME='ROUGH_REFLECTANCE'><A href='../../html_code/radiance/landem.inc.html#ROUGH_REFLECTANCE' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine rough_reflectance(frequency,theta,sigma,rvert,rh) 4
!$$$ subprogram documentation block
! . . . .
! subprogram: rought_reflectance calculate surface relectivity
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: compute the surface reflectivety for a rough surface
! having a standard devoation of height of sigma
!
!
! program history log:
!
! input argument list:
!
! frequency - frequency (ghz)
! theta - local zenith angle (degree)
! sigma - standard deviation of rough surface height
! smooth surface:0.38, medium: 1.10, rough:2.15 cm
!
! internal variables
!
!
! output argument list:
!
! rvert - reflectivity at vertical polarization
! rh - reflectivity at horizontal polarization
!
!
! important internal variables:
!
! k0 - a propagation constant or wavenumber in a free space
!
! remarks:
!
! references:
!
! wang, j. and b. j. choudhury, 1992: passive microwave radiation from soil: examples...
! passive microwave remote sensing of .. ed. b. j. choudhury, etal vsp.
! also wang and choudhury (1982)
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: one, two
implicit none
real(r_kind) theta, frequency
! real(r_kind) p, q, sigma, rh, rvert, rh_s, rv_s
real(r_kind) p, q, rh, rvert, rh_s, rv_s, sigma
! rh_s = rh
! rv_s = rvert
rh_s = 0.3_r_kind*rh
rv_s = 0.3_r_kind*rvert
! p = 0.3_r_kind
q = 0.35_r_kind*(one - exp(-0.60_r_kind*frequency*sigma**two))
! rh = (q*rv_s + (one - q)*rh_s)*p
! rv = (q*rh_s + (one - q)*rv_s)*p
rh = rh_s + q*(rv_s-rh_s)
rvert = rv_s + q*(rh_s-rv_s)
return
end subroutine rough_reflectance
<A NAME='TWO_STREAM_SOLUTION'><A href='../../html_code/radiance/landem.inc.html#TWO_STREAM_SOLUTION' TARGET='top_target'><IMG SRC="../../gif/bar_red.gif" border=0></A>
subroutine two_stream_solution(b,mu,gv,gh,ssalb_h,ssalb_v,tau_h,tau_v,r12_h, & 6
r12_v,r21_h,r21_v,r23_h,r23_v,t21_v,t21_h,t12_v,t12_h,esv,esh)
!$$$ subprogram documentation block
! . . . .
! subprogram: two_stream_solution
!
! prgmmr: org: nesdis date: 2000-11-28
!
! abstract: two stream solution
!
! version: beta
!
! program history log:
!
! input argument list:
!
! b - scattering layer temperature (k) (gdas)
! mu - cos(theta)
! gv - asymmetry factor for v pol
! gh - asymmetry factor for h pol
! ssalb_v - single scattering albedo at v. polarization
! ssalb_h - single scattering albedo at h. polarization
! tau_v - optical depth at v. polarization
! tau_h - optical depth at h. polarization
! r12_v - reflectivity at vertical polarization
! r12_h - reflectivity at horizontal polarization
! r21_v - reflectivity at vertical polarization
! r21_h - reflectivity at horizontal polarization
! r23_v - reflectivity at vertical polarization
! r23_h - reflectivity at horizontal polarization
! t21_v - transmisivity at vertical polarization
! t21_h - transmisivity at horizontal polarization
! t12_v - transmisivity at vertical polarization
! t12_h - transmisivity at horizontal polarization
!
! output argument list:
!
! esh - emissivity for horizontal polarization
! esv - emissivity for vertical polarization
!
! remarks:
!
! attributes:
! language: f90
! machine: ibm rs/6000 sp
!
!$$$
! use kinds, only: r_kind
! use constants, only: one, two
implicit none
real(r_kind) b, mu, gv, gh, ssalb_h, ssalb_v, tau_h,tau_v,r12_h, &
r12_v, r21_h, r21_v, r23_h, r23_v, t21_v, t21_h, t12_v, t12_h, esv, esh
! real(r_kind) esh0, esh1, esh2, esv0, esv1, esv2
! real(r_kind) esh1, esv1
real(r_kind) alfa_v, alfa_h, kk_h, kk_v, gamma_h, gamma_v, beta_v, beta_h
real(r_kind) fact1,fact2
alfa_h = sqrt((one - ssalb_h)/(one - gh*ssalb_h))
kk_h = sqrt ((one - ssalb_h)*(one - gh*ssalb_h))/mu
beta_h = (one - alfa_h)/(one + alfa_h)
gamma_h = (beta_h -r23_h)/(one-beta_h*r23_h)
alfa_v = sqrt((one-ssalb_v)/(one - gv*ssalb_v))
kk_v = sqrt ((one-ssalb_v)*(one - gv*ssalb_v))/mu
beta_v = (one - alfa_v)/(one + alfa_v)
gamma_v = (beta_v -r23_v)/(one-beta_v*r23_v)
! esh0 = i0/b*r12_h
! esh0 = zero
! esh1 = (one - beta_h)*(one + gamma_h*exp(-two*kk_h*tau_h))
! esh1 = esh1/((one-beta_h*r21_h)-(beta_h-r21_h)*gamma_h*exp(-two*kk_h*tau_h))
! esh2 = i0/b*t12_h*(beta_h-gamma_h*exp(-two*kk_h*tau_h))
! esh2 = esh2 /((one-beta_h*r21_h)-(beta_h-r21_h)*gamma_h*exp(-two*kk_h*tau_h))
! esh2 = zero
! esv0 = i0/b*r12_v
! esv0 = zero
! esv1 = (one-beta_v)*(one+gamma_v*exp(-two*kk_v*tau_v))
! esv1 = esv1/((one-beta_v*r21_v)-(beta_v-r21_v)*gamma_v*exp(-two*kk_v*tau_v))
! esv2 = i0/b*t12_v*(beta_v - gamma_v*exp(-two*kk_v*tau_v))
! esv2 = esv2 /((one-beta_v*r21_v)-(beta_v-r21_v)*beta_v*exp(-two*kk_v*tau_v))
! esv2 = zero
! esh = esh0 + t21_h*(esh1 + esh2)
! esv = esv0 + t21_v*(esv1 + esv2)
fact1=gamma_h*exp(-two*kk_h*tau_h)
fact2=gamma_v*exp(-two*kk_v*tau_v)
esh = t21_h*(one - beta_h)*(one + fact1) &
/(one-beta_h*r21_h-(beta_h-r21_h)*fact1)
esv = t21_v*(one - beta_v)*(one + fact2) &
/(one-beta_v*r21_v-(beta_v-r21_v)*fact2)
return
end subroutine two_stream_solution