|
WRF Model Physics Options and References
For quick navigation, click buttons below:

Micro Physics Options (mp_physics)
Kessler Scheme |
option 1 |
Kessler, E., 1969: On the distribution and continuity of water substance in atmoshperic circulations. Meteor. Monogr., 32, Amer. Meteor. Soc.
doi:10.1007/978-1-935704-36-2_1
PDF |
Purdue Lin Scheme |
option 2 |
Chen, S.-H. and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80(1), 99–118.
doi:10.2151/jmsj.80.99
PDF |
WRF Single–moment 3–class and 5–class Schemes |
options 3 & 4 |
Hong, Song–You, Jimy Dudhia, and Shu–Hua Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
PDF
|
Eta (Ferrier) Scheme |
option 5 |
NOAA, cited 2001: National Oceanic and Atmospheric Administration Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.] |
WRF Single–moment 6–class Scheme |
option 6 |
Hong, S.–Y., and J.–O. J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong and Lim, 2006
PDF |
Goddard Scheme |
option 7 |
Tao, Wei–Kuo, Joanne Simpson, Michael McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231–235.
doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
PDF
Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and obser- vations. J. Geophys. Res. Atmos., 121, 1278–1305.
doi:10.1002/2015JD023986
PDF
|
Thompson Scheme |
option 8 |
Thompson, Gregory, Paul R. Field, Roy M. Rasmussen, William D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095–5115.
doi:10.1175/2008MWR2387.1
PDF |
Milbrandt–Yau Double Moment Scheme |
option 9 |
Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.
doi:10.1175/JAS3534.1
PDF
Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three–moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.
doi:10.1175/JAS3535.1
PDF |
Morrison 2–moment Scheme |
option 10 |
Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One– and Two–Moment Schemes. Mon. Wea. Rev., 137, 991–1007.
doi:10.1175/2008MWR2556.1
PDF |
CAM V5.1 2–moment 5–class Scheme |
option 11 |
Eaton, Brian. "User’s Guide to the Community Atmosphere Model CAM-5.1." NCAR. URL http://www.cesm.ucar.edu/models/cesm1.0/cam (2011). |
Stony–Brook University Scheme |
option 13 |
Lin, Yanluan, and Brian A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature–dependent ice characteristics. Mon. Wea. Rev., 139, 1013–1035.
doi:10.1175/2010MWR3293.1
PDF |
WRF Double Moment 5–class and 6–class Schemes |
options 14 & 16 |
Lim, K.–S. S., and S.–Y. Hong, 2010: Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.doi:10.1175/2009MWR2968.1
PDF |
NSSL 2–moment Scheme and 2–moment Scheme with CCN Prediction |
options 17 & 18 |
Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small
thunderstorm with two–moment bulk microphysics. J. Atmos. Sci., 67, 171–194.
doi:10.1175/2009JAS2965.1
PDF |
NSSL 1–moment 7–class Scheme |
option 19 |
This is a single–moment version of the NSSL 2–moment scheme (see above). No paper is available yet for this scheme. |
NSSL 1–moment 6–class Scheme |
option 21 |
Gilmore, Matthew S., Jerry M. Straka, and Erik N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627.
doi:10.1175/MWR2810.1
PDF |
WRF Single Moment and Double Moment 7-class Schemes |
options 24 & 26 |
Bae, S.Y., Hong, SY. & Tao, WK., 2018: Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia-Pac. J. Atmos. Sci. doi:10.1007%2Fs13143-018-0066-3
|
Aerosol–aware & Hail/Graupel/Aerosol Thompson Schemes |
options 28 & 38 |
Thompson, Gregory, and Trude Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71.10, 3636-3658.
doi:10.1175/JAS-D-13-0305.1
PDF |
HUJI SBM (Fast) |
option 30 |
Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365–384.
doi:10.1175/2009JAS3210.1
PDF |
HUJI SBM (Full) |
option 32 |
Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: model description and possible applications. J. Atmos. Sci., 61, 2963–2982.
doi:10.1175/JAS-3350.1
PDF |
P3 |
options 50, 51, 52 |
Morrison, Hugh, and Jason A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287-311. doi:10.1175/JAS-D-14-0065.1
PDF |
Jensen ISHMAEL Scheme |
option 55 |
Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predict- ing ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 2081–2104. doi:10.1175/JAS-D-16-0350.1
PDF |
National Taiwan University (NTU) Scheme |
option 56 |
Tsai, Tzu-Chin, and Jen-Ping Chen: Multimoment ice bulk microphysics scheme with consideration for particle shape and apparent density. Part I: Methodology and idealized simulation J. Atmos. Sci., 77-5, 1821-1850. doi:10.1175/JAS-D-19-0125.1
|
Go to top of page
Planetary Boundary Layer (PBL) Physics Options (bl_pbl_physics)
Yonsei University Scheme (YSU) |
option 1 |
Hong, Song–You, Yign Noh, Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi:10.1175/MWR3199.1
PDF |
Mellor–Yamada–Janjic Scheme (MYJ) |
option 2 |
Janjic, Zavisa I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. doi:10.1175/1520-0493(1994)122%3c0927:TSMECM%3e2.0.CO;2
PDF
Mesinger, F., 1993: Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Res. Activ. in Atmos. and Ocean. Mod., WMO, Geneva, CAS/JSC WGNE Rep. No. 18, 4.28-4.29.
PDF
|
NCEP Global Forecast System Scheme |
option 3 |
Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339. doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.
PDF |
Quasi–normal Scale Elimination (QNSE) Scheme |
option 4 |
Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice. Bound.–Layer Meteor., 117, 231–257. doi:10.1007/s10546-004-6848-4
PDF |
Mellor–Yamada Nakanishi Niino (MYNN) Level 2.5 and Level 3 Schemes |
options 5 & 6 |
Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Bound. Layer Meteor. 119, 397–407. doi:10.1007/s10546-005-9030-8
PDF
Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895–912. doi:10.2151/jmsj.87.895
PDF
Olson, Joseph B., Jaymes S. Kenyon, Wayne M. Angevine, John M . Brown, Mariusz Pagowski, and Kay Sušelj, 2019: A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW. NOAA Technical Memorandum OAR GSD, 61, pp. 37.
doi:10.25923/n9wm-be49
PDF
|
Asymmetric Convection Model 2 Scheme (ACM2) |
option 7 |
Pleim, Jonathan E., 2007: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteor. Climatol., 46, 1383–1395. doi:10.1175/JAM2539.1
PDF |
Bougeault–Lacarrere Scheme (BouLac) |
option 8 |
Bougeault, P., P. Lacarrere, 1989: Parameterization of Orography–Induced Turbulence in a Mesobeta––Scale Model. Mon. Wea. Rev., 117, 1872–1890. doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
PDF |
University of Washington (TKE) Boundary Layer Scheme |
option 9 |
Bretherton, Christopher S., and Sungsu Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 3422–3448. doi:10.1175/2008JCLI2556.1
PDF |
TEMF Scheme |
option 10 |
Angevine, Wayne M., Hongli Jiang, and Thorsten Mauritsen, 2010: Performance of an eddy diffusivity–mass flux scheme for shallow cumulus boundary layers. Mon. Wea. Rev., 138, 2895–2912. doi:10.1175/2010MWR3142.1
PDF |
Shin-Hong Scale–aware Scheme |
option 11 |
Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271. doi:10.1175/MWR-D-14-00116.1
PDF |
Grenier–Bretherton–McCaa Scheme |
option 12 |
Grenier, Herve, and Christopher S. Bretherton, 2001: A moist PBL parameterization for large–scale models and its application to subtropical cloud–topped marine boundary layers. Mon. Wea. Rev., 129, 357–377. doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2
PDF |
TKE (E)-TKE Dissipation Rate (Epsilon) (EEPS) |
option 16 |
Zhang, C., Y. Wang and M. Xue, 2020: Evaluation of an E–ε and Three Other Boundary Layer Parameterization Schemes in the WRF Model over the Southeast Pacific and the Southern Great Plains. Mon. Wea. Rev.,148, 1121–1145. https://doi.org/10.1175/MWR-D-19-0084.1 |
K-epsilon-theta^2 (KEPS) |
option 17 |
Zonato, Andrea, A. Martilli, P. A. Jimenez, J. Dudhia, D. Zardi, and L. Giovannini, A new K-epsilon turbulence parameterization for mesoscale meteorological models. Mon. Wea. Rev., 150, 2157–2174. doi:10.1175/MWR-D-21-0299.1
PDF |
MRF Scheme |
option 99 |
Hong, S.–Y., and H.–L. Pan, 1996: Nonlocal boundary layer vertical
diffusion in a medium–range forecast model. Mon. Wea. Rev., 124, 2322–2339. doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
PDF |
Gravity Wave Drag |
gwd_opt = 1 |
Hong, Song–You, Jung Choi, Eun-Chul Chang, Hoon Park, and Young-Joon Kim, 2008: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523–531. doi:10.1175/2007WAF2007030.1
PDF
Kim, Young-Joon, and Akio Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902. doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2
PDF
Choi H, Hong S, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res., 120 doi:10.1002/2015JD024230
PDF
|
Wind–farm (drag) Surface Layer Parameterization Scheme |
windturbine_spec |
Fitch, Anna C., Joseph B. Olson, Julie K. Lundquist, Jimy Dudhia, Alok K. Gupta, John Michalakes, and Idar Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 3017–3038. doi:10.1175/MWR-D-11-00352.1
PDF |
FogDES Scheme
(details) |
grav_settling = 2 |
Katata, G. (2014), Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements, J. Geophys. Res. Atmos., 119, 8137–8159 doi:10.1002/2014JD021669
PDF |
Go to top of page
Cumulus Parameterization Options (cu_physics)
Kain–Fritsch Scheme |
option 1 |
Kain, John S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
PDF |
Moisture–advection–based Trigger for Kain–Fritsch Cumulus Scheme |
kfeta_trigger = 2 |
Ma, Lei–Ming, and Zhe–Min Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190–211.
doi:10.1016/j.atmosres.2008.09.022
PDF |
RH–dependent Additional Perturbation to option 1 for the Kain-Fritsch Scheme |
kfeta_trigger = 3 |
|
Betts–Miller–Janjic Scheme |
option 2 |
Janjic, Zavisa I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.
doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
PDF |
Grell–Freitas Ensemble Scheme |
option 3 |
Grell, G. A. and Freitas, S. R., 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233-5250, doi:10.5194/acp-14-5233-2014.
Grell and Freitas, 2014
PDF
|
Old Simplified Arakawa–Schubert Scheme |
option 4 |
Pan, H. L., and W. S. Wu., 1995: Implementing a mass flux convective parameterization package for the NMC medium range forecast model. NMC office note, 409.40, 20–233.
Pan et al., 1995
PDF |
Grell 3D Ensemble Scheme |
option 5 |
Grell, Georg A., 1993: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Wea. Rev., 121, 764–787.
doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
PDF
Grell, G. A, D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693. doi:10.1029/2002GL015311
PDF |
Tiedtke Scheme |
option 6 |
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large–scale models. Mon. Wea. Rev., 117, 1779–1800.
doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
PDF
Zhang, Chunxi, Yuqing Wang, and Kevin Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513.
doi:10.1175/MWR-D-10-05091.1
PDF |
Zhang–McFarlane Scheme |
option 7 |
Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.– Ocean, 33, 407–446. doi:10.1080/07055900.1995.9649539
PDF |
Kain–Fritsch
Cumulus Potential Scheme |
option 10 |
Berg, L.K., W.I. Gustafson, E.I. Kassianov, E.I., and L. Deng, 2013: Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Wea. Rev., 141, 134-147.
doi:10.1175/MWR-D-12-000136.1
PDF
|
Multi–scale Kain–Fritsch Scheme |
option 11 |
Zheng, Yue, K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev.,117-3, 833-860.
doi:10.1175/MWR-D-15-0005.1
PDF
Glotfelty, T., K. Alapaty, J. He, P. Hawbecker, X. Song, and G. Zhang, 2019: The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI): Development, evaluation, and initial application. Mon. Wea. Rev. , 147, 1491-1511.
doi:10.1175/MWR-D-18-0267.1
PDF
|
New Simplified Arakawa–Schubert Scheme (for Basic WRF) |
option 14 |
Han, Jongil and Hua–Lu Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533. doi:10.1175/WAF-D-10-05038.1
PDF
After V4.0
Kwon, Y.-C. and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev. 145, 585-598.
doi:10.1175/MWR-D-16-0034.1
PDF
|
New Tiedtke Scheme |
option 16 |
Zhang, C. and Y. Wang, 2017: Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Climate, 30, 5923-5941.
doi:10.1175/JCLI-D-16-0597.1
PDF |
New Simplified Arakawa-Schubert Scheme (for HWRF) |
option 84 |
Han, Jongil and Hua–Lu Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533. doi:10.1175/WAF-D-10-05038.1
PDF |
Grell–Devenyi (GD) Ensemble Scheme |
option 93 |
Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14).
doi:10.1029/2002GL015311
PDF |
Old Kain–Fritsch Scheme |
option 99 |
Kain, John S., and J. Michael Fritsch, 1990: A one–dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.
doi:10.1175/1520-0469(1990)047<2785:AODEPM>2.0.CO.2;
PDF |
Go to top of page
Shortwave (ra_sw_physics) and Longwave (ra_lw_physics) Options
Dudhia Shortwave Scheme |
sw option 1 |
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci., 46, 3077–3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
PDF |
RRTM Longwave Scheme |
lw option 1 |
Mlawer, Eli. J., Steven. J. Taubman, Patrick. D. Brown, M. J. Iacono, and S. A. Clough,1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J. Geophys. Res., 102, 16663–16682. doi:10.1029/97JD00237
PDF |
Goddard Shortwave Scheme |
sw option 2 |
Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3, 85pp.
PDF
Matsui, T., S. Q. Zhang, W.-K. Tao, S. Lang, C. Ichoku, and C. Peters-Lidard, 2018: Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African Monsoon simulations. Clim. Dyn., 1-21.
doi:10.1007/s00382-018-4187-2
|
CAM Shortwave and Longwave Schemes |
lw/sw option 3 |
Collins, William D., et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN–464+STR. 214 pp.
PDF |
RRTMG Shortwave and Longwave Schemes |
lw/sw option 4 |
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. doi:10.1029/2008JD009944
PDF |
New Goddard Shortwave and Longwave Schemes |
lw/sw option 5
|
Chou, M. D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. 104606, 15, 40 pp.
PDF
Chou, M. D., M. J. Suarez, X. Z. Liang, and M. M. H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo., 104606, 19, 68 pp.
PDF |
Fu–Liou–Gu Shortwave and Longwave Schemes |
lw/sw option 7 |
Gu, Y., Liou, K. N., Ou, S. C., and Fovell, R., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119. doi:10.1029/2010JD014574
PDF
Fu, Qiang, and K. N. Liou, 1992: On the correlated k–distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.
doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
PDF |
RRTMG–K Shortwave and Longwave Schemes |
lw/sw option 14
|
Baek, Sunghye, 2017, A revised radiation package of G–packed McICA and two–stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9. doi:10.1002/2017MS000994
PDF |
Held–Suarez Relaxation Longwave Scheme |
sw option 31 |
|
GFDL Shortwave and Longwave Schemes |
lw/sw option 99
|
Fels, Stephen. B., and M. D. Schwarzkopf, 1981, An efficient, accurate algorithm for calculating CO2 15 µm band cooling rates. J. Geophys. Res., 86, 1205–1232. doi:10.1029/JC086iC02p01205
PDF |
Go to top of page
Land Surface Options (sf_surface_physics)
5–layer Thermal Diffusion Scheme |
option 1 |
Dudhia, Jimy, 1996: A multi-layer soil temperature model for MM5. the Sixth PSU/NCAR Mesoscale Model Users' Workshop.
PDF |
Unified Noah Land Surface Model |
option 2 |
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
PDF |
RUC Land Surface Model |
option 3 |
Benjamin, Stanley G., Georg A. Grell, John M. Brown, and Tatiana G. Smirnova, 2004: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132, 473-494.
doi:10.1175/1520-0493(2004)132<0473:MWPWTF>2.0.CO;2
PDF
https://doi.org/10.25923/55x8-cy36 |
Noah–MP Land Surface Model |
option 4 |
Niu, Guo–Yue, Zong–Liang Yang, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil Kumar, Kevin Manning, Dev Niyogi, Enrique Rosero, Mukul Tewari, Youlong Xia, 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res., 116, D12109. doi:10.1029/2010JD015139
PDF
Yang, Z.–L., G.–Y. Niu, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, L. Longuevergne, K. Manning, D. Niyogi, M. Tewari, and Y. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110. doi:10.1029/2010JD015140
PDF
He et al., 2023: The community Noah–MP land surface modeleling system technical description Version 5.0 No. NCAR/TN-575+STR. doi:10.5065/ew8g-yr95
PDF
|
Community Land Model Version 4 (CLM4) |
option 5 |
Oleson, Keith W., et al., 2010: Technical description of version 4 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN–478+STR. 266 pp.
PDF
Lawrence, D. M., et al., 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001. doi:10.1029/2011MS00045
PDF
An earlier version of CLM has been quantitatively evaluated within WRF, referenced here:
Jin, J., and L. Wen, 2012: Evaluation of snowmelt simulation in the Weather Research and Forecasting model. J. Geophys. Res., 117, D10110.
doi:10.1029/2011JD016980
PDF
Lu, Y., and L. M. Kueppers, 2012: Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3–Community Land Model 3.5). J. Geophys. Res., 117, D06111. doi:10.1029/2011JD016991
PDF
Subin, Z. M., W. J. Riley, J. Jin, D. S. Christianson, M. S. Torn, and L. M. Kueppers, 2011: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3–CLM3.5). Earth Interac., 15, 15.
doi:10.1175/2010EI331.1
PDF |
Pleim–Xiu Land Surface Model |
option 7 |
Noilan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536-549.
doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
PDF
Pleim, J. E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 16-32.
doi:10.1175/1520-0450-34.1.16
PDF
Xiu, Aijun, and J. E. Pleim, 2001: Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model. J. Appl. Meteor., 40, 192–209.
doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2
PDF
Pleim, J. E., and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42, 1811-1822. doi:10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2
PDF
Pleim, J. E., and R. Gilliam, 2009: An indirect data assimilation scheme for deep soil temperature in the Pleim-Xiu land surface model. J. Appl. Meteor. Climatol., 48, 1362-1376. doi:10.1175/2009JAMC2053.1
PDF
Gilliam, R. C., and J. E. Pleim, 2010: Performance assessment of new land-surface and planetary boundary layer physics in the WRF-ARW. J. App. Meteor. Climatol., 49(4), 760-774. doi:10.1175/2009JAMC2126.1
PDF
|
Simplified Simple Biosphere (SSiB) Land Surface Model |
option 8 |
Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345–364. doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2
PDF
Sun, S., and Y. Xue, 2001: Implementing a new snow scheme in Simplified Simple Biosphere Model (SSiB), Adv. Atmos. Sci., 18, 335–354.
doi:10.1007/BF02919314
PDF |
University of Arizona Snow Physics for Noah |
ua_phys = .true. |
Wang, Z., X. Zeng, and M. Decker, 2010: Improving snow processes in the Noah land model, J. Geophys. Res., 115, D20108. doi:10.1029/2009JD013761
PDF |
Sub-tiling option for Noah LSM |
sf_surface_mosaic = 1 |
Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, 2013: Development and Evaluation of a Mosaic Approach in the WRF-Noah Framework. J. Geophys. Res., 118,11,918-11,11,935. doi:10.1002/2013JD02065
PDF |
Go to top of page
Shallow Cumulus Options (shcu_physics)
University of Washington Scheme |
option 2 |
Park, Sungsu, and Christopher S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 3449–3469.
doi:10.1175/2008JCLI2557.1
PDF |
Global/Regional Integrated Modeling System (GRIMS) Scheme |
option 3 |
Hong, SY. & JH Jang, 2018: Impacts of shallow convection processes on a simulated Boreal summer climatology in a global atmospheric model. J. Asia-Pacific J Atmos Sci (2018) 54(Suppl 1): 361.
doi:10.1007/s13143-018-0013-3
|
Deng Scheme |
option 5 |
Deng, A., N. L. Seaman, and J. S. Kain, 2003: A shallow-convection parameterization for mesoscale models. Part I: Submodel description and preliminary applications. J. Atmos. Sci., 60, 3456.
doi:10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2
PDF |
Go to top of page
Surface Layer Options (sf_sfclay_physics)
Revised MM5 Scheme |
option 1 |
Jimenez, Pedro A., Jimy Dudhia, J. Fidel Gonzalez–Rouco, Jorge Navarro, Juan P. Montavez, and Elena Garcia–Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898–918. doi:10.1175/MWR-D-11-00056.1
PDF |
Eta Similarity Scheme |
option 2 |
Monin A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187 (in Russian)
PDF
Janjic, Z. I., 1994: The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
PDF
Janjic, Z. I., 1996: The surface layer in the NCEP Eta Model. Eleventh conference on numerical weather prediction, Norfolk, VA, 19–23 August 1996. Amer Meteor Soc, Boston, MA, pp 354–355.
PDF
Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61 pp.
PDF |
NCEP Global Forecast System Scheme |
option 3 |
|
QNSE Scheme |
option 4 |
|
MYNN Scheme |
option 5 |
Olson et al., 2021
|
Pleim–Xiu Scheme |
option 7 |
Pleim, J. E., 2006: A simple, efficient solution of flux-profile relationships in the atmospheric surface layer, J. Appl. Meteor. and Clim., 45, 341–347.
doi:10.1175/JAM2339.1
PDF |
TEMF Scheme |
option 10 |
Angevine, Wayne M., Hongli Jiang, and Thorsten Mauritsen, 2010: Performance of an eddy diffusivity–mass flux scheme for shallow cumulus boundary layers. Mon. Wea. Rev., 138, 2895–2912. doi:10.1175/2010MWR3142.1
PDF |
MM5 Similarity Scheme |
option 91 |
Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.
doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
PDF
Dyer, A. J., and B. B. Hicks, 1970: Flux–gradient relationships in the constant flux layer. Quart.
J. Roy. Meteor. Soc., 96, 715–721. doi:10.1002/qj.49709641012
PDF
Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67–90.
doi:10.1002/qj.49709640708
PDF
Beljaars, A.C.M., 1994: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270.
doi:10.1002/qj.49712152203
PDF
Zhang, D.–L., and R.A. Anthes, 1982: A high–resolution model of the planetary boundary layer– sensitivity tests and comparisons with SESAME–79 data. J. Appl. Meteor., 21, 1594–1609. doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2
PDF |
topo_wind: Topographic Correction for Surface Winds to Represent Extra Drag from Sub–grid Topography and Enhanced Flow at Hill Tops |
topo_wind = 1 or 2 |
Jimenez, Pedro A., and Jimy Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300–316.
doi:10.1175/JAMC-D-11-084.1
PDF |
Chen–Zhang Modified Zilitinkevich Thermal Roughness Length |
iz0tlnd |
Chen, F. and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404. doi:10.1029/2009GL037980
PDF |
Go to top of page
Urban Surface Options (sf_urban_physics)
Urban Canopy Model |
option 1 |
Chen, F., H. Kusaka, R. Bornstain, J. Ching, C.S.B. Grimmond, S. Grossman-Clarke, T. Loridan, K. Manning, A. Martilli, S. Miao, D. Sailor, F. Salamanca, H. Taha, M. Tewari, X. Wang, A. Wyszogrodzki, and C. Zhang, 2011: The integrated WRF/urban modeling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31, 273-288. DOI: 10.1002/joc.2158.
doi:10.1002/joc.2158
PDF |
Building Environment Parameterization (BEP) and Building Energy Model (BEM) Schemes |
options 2 & 3 |
Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations––part II. Validation with one dimension off–line simulations. Theor. Appl. Climatol., 99, 345–356.
doi:10.1007/s00704-009-0143-8
PDF
Martilli A, Clappier A, and Rotach M.W., 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteorol., 104, 261–304.
doi:10.1023/A:1016099921195
PDF |
Go to top of page
Ocean Model Options (sf_ocean_physics)
Simple Mixed–layer Ocean Model |
option 1 |
Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind–mixed layer. Geophys. Fluid. Dyn., 3, 381–404. doi:10.1080/03091927208236105 |
Price–Weller–Pinkel 3–D Ocean Model |
option 2 |
Price, J. F., 1981: Upper Ocean Response to a Hurricane. J. Phy. Oceanogr., 11, 153–175.
doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
PDF
Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving
hurricane. J. Phy. Oceanogr., 24, 233–260. doi:10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
PDF
Chia-Ying Lee and Shuyi S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 3576–3594.
doi: http://dx.doi.org/10.1175/JAS-D-12-046.1 doi:10.1175/JAS-D-12-046.1
PDF |
Go to top of page
Other Model Options
Analysis Nudging (FDDA) |
grid_fdda = 1 |
Stauffer D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416–434.
doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
PDF
Liu, Y., T.T. Warner, J. F. Bowers, L. P. Carson, F. Chen, C. A. Clough, C. A. Davis, C. H. Egeland, S. Halvorson, T.W. Huck Jr., L. Lachapelle, R.E. Malone, D. L. Rife, R.-S. Sheu, S. P. Swerdlin, and D.S. Weingarten, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part 1: Overview of the modeling system, the forecast products. J. Appl. Meteor. Clim., 47, 1077–1092.
doi:10.1175/2007JAMC1653.1
PDF |
Spectral Nudging |
grid_fdda = 2 |
Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104.
doi:10.1029/2003JD004495
PDF |
Observational Nudging |
obs_nudge_opt=1 |
Liu, Y., T.T. Warner, J. F. Bowers, L. P. Carson, F. Chen, C. A. Clough, C. A. Davis, C. H. Egeland, S. Halvorson, T.W. Huck Jr., L. Lachapelle, R.E. Malone, D. L. Rife, R.-S. Sheu, S. P. Swerdlin, and D.S. Weingarten, 2008: The operational mesogamma–scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part 1: Overview of the modeling system, the forecast products. J. Appl. Meteor. Clim., 47, 1077–1092.
doi:10.1175/2007JAMC1653.1
PDF
Stauffer D. R., and N. L. Seaman, 1994: Multiscale four–dimensional data assimilation. J. Appl. Meteor., 33, 416–434.
doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
PDF
Xu, M., Y. Liu, C. Davis and T. Warner, 2002: Sensitivity study on nudging parameters for a mesoscale FDDA system. 19th Conference on Weather Analysis and Forecasting, and 15th Conference on Numerical Weather Prediction, 12–16 August, 2002, San Antonio, Texas, Amer. Meteror. Soc., 4B.4.
PDF |
Stochastic–energy Backscatter Scheme |
stoch_force_opt = 1 |
Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q.J.R. Meteorol. Soc., 131, 3079–3102.
doi:10.1256/qj.04.106
PDF
Berner, J., S.–Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 1972–1995. doi:10.1175/2010MWR3595.1
PDF |
Zaengl Radiation/Topography (Slope/Shadowing) |
slope_rad = 1 & topo_shading = 1 |
Zangl, Gunther, 2002: An Improved Method for Computing Horizontal Diffusion in a Sigma–Coordinate Model and Its Application to Simulations over Mountainous Topography. Mon. Wea. Rev., 130, 1423–1432.
doi:10.1175/1520-0493(2002)130<1423:AIMFCH>2.0.CO;2
PDF |
CLM4.5 Lake Model |
sf_lake_physics = 1 |
Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, doi:10.1029/2011MS000072
PDF |
Fast All-sky Radiation Model for Solar applications (FARMS) |
swint_opt = 2 |
Xie, Y., M. Sengupta and J. Dudhia, 2016: A Fast All-sky Radiation Model for Solar applicatins (FARMS): Algorithm and performance evaluation. Solar Energy, 135, 435 - 445. |
PR92 Lightning Option |
lightning_option = 1, 2, or 11 |
Price, C. and D. Rind, 1992: Simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97(D9), 9919-9933. doi:10.1029/92JD00719
Wong, J., M. Barth, and D. Noone, 2012: Evaluating a Lightning parameterization at resolutions with partially-resolved convection, GMDD, in preparation. Geosci. Model Dev., 6, 429-443. doi:10.5194/gmd-6-429-2013
|
Yair et al. Lightning Option |
lightning_option = 3 |
Yair, Y. et al., 2010: Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields, J. Geophys. Res., 115, D04205, doi:10.1029/2008JD010868
Lynn, B., et al., 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models. Wea. Forecasting, 27:6, 1470-1488. doi:10.1175/WAF-D-11-00144.1
|
SMS-3DTKE Subgrid Mixing |
km_opt = 5 |
Zhang et al., 2018
|
LES
References
Moeng, C.-H., J. Dudhia, J. B. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF Model. Mon. Wea. Rev., 135, 2295–2311. doi: http://dx.doi.org/10.1175/MWR3406.1
|
Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF Model. Mon. Wea. Rev., 138, 4212–4228. doi: http://dx.doi.org/10.1175/2010MWR3286.1
|
WRF Specialty Systems
WRF-Hydro |
Gochis, D.J., W. Yu, D.N. Yates, 2015: The WRF-Hydro Model Technical Description and User's Guide, Version 3.0. NCAR Tech. Document. 120 pp. Available online at: http://www.ral.ucar.edu/projects/wrf_hydro/
|
WRF-Fire |
Coen J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 16–38.
doi: http://dx.doi.org/10.1175/JAMC-D-12-023.1
|
Go to top of page
|