WRF Model Physics Options and References



For quick navigation, click buttons below:


       
         
   



Micro Physics Options (mp_physics)

Kessler Scheme option 1 Kessler, E., 1969: On the distribution and continuity of water substance in atmoshperic circulations. Meteor. Monogr., 32, Amer. Meteor. Soc.
doi:10.1007/978-1-935704-36-2_1
PDF
Purdue Lin Scheme option 2 Chen, S.-H. and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80(1), 99–118.
doi:10.2151/jmsj.80.99
PDF
WRF Single–moment 3–class and 5–class Schemes options 3 & 4 Hong, Song–You, Jimy Dudhia, and Shu–Hua Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
PDF
Eta (Ferrier) Scheme option 5 NOAA, cited 2001: National Oceanic and Atmospheric Administration Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]
WRF Single–moment 6–class Scheme option 6 Hong, S.–Y., and J.–O. J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong and Lim, 2006
PDF
Goddard Scheme option 7 Tao, Wei–Kuo, Joanne Simpson, Michael McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231–235.
doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
PDF

Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and obser- vations. J. Geophys. Res. Atmos., 121, 1278–1305.
doi:10.1002/2015JD023986
PDF
Thompson Scheme option 8 Thompson, Gregory, Paul R. Field, Roy M. Rasmussen, William D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095–5115.
doi:10.1175/2008MWR2387.1
PDF
Milbrandt–Yau Double Moment Scheme option 9 Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.
doi:10.1175/JAS3534.1
PDF

Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three–moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.
doi:10.1175/JAS3535.1
PDF
Morrison 2–moment Scheme option 10 Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One– and Two–Moment Schemes. Mon. Wea. Rev., 137, 991–1007.
doi:10.1175/2008MWR2556.1
PDF
CAM V5.1 2–moment 5–class Scheme option 11 Eaton, Brian. "User’s Guide to the Community Atmosphere Model CAM-5.1." NCAR. URL http://www.cesm.ucar.edu/models/cesm1.0/cam (2011).
Stony–Brook University Scheme option 13 Lin, Yanluan, and Brian A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature–dependent ice characteristics. Mon. Wea. Rev., 139, 1013–1035.
doi:10.1175/2010MWR3293.1
PDF
WRF Double Moment 5–class and 6–class Schemes options 14 & 16 Lim, K.–S. S., and S.–Y. Hong, 2010: Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.doi:10.1175/2009MWR2968.1
PDF
NSSL 2–moment Scheme and 2–moment Scheme with CCN Prediction options 17 & 18 Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two–moment bulk microphysics. J. Atmos. Sci., 67, 171–194.
doi:10.1175/2009JAS2965.1
PDF
NSSL 1–moment 7–class Scheme option 19 This is a single–moment version of the NSSL 2–moment scheme (see above). No paper is available yet for this scheme.
NSSL 1–moment 6–class Scheme option 21 Gilmore, Matthew S., Jerry M. Straka, and Erik N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627.
doi:10.1175/MWR2810.1
PDF

WRF Single Moment and Double Moment 7-class Schemes

options 24 & 26 Bae, S.Y., Hong, SY. & Tao, WK., 2018: Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia-Pac. J. Atmos. Sci.
doi:10.1007%2Fs13143-018-0066-3
Aerosol–aware & Hail/Graupel/Aerosol Thompson Schemes options 28 & 38 Thompson, Gregory, and Trude Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71.10, 3636-3658.
doi:10.1175/JAS-D-13-0305.1
PDF
HUJI SBM (Fast) option 30 Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365–384.
doi:10.1175/2009JAS3210.1
PDF
HUJI SBM (Full) option 32 Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: model description and possible applications. J. Atmos. Sci., 61, 2963–2982.
doi:10.1175/JAS-3350.1
PDF
P3 options 50, 51, 52 Morrison, Hugh, and Jason A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287-311. doi:10.1175/JAS-D-14-0065.1
PDF
Jensen ISHMAEL Scheme option 55 Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predict- ing ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 2081–2104.
doi:10.1175/JAS-D-16-0350.1
PDF
National Taiwan University (NTU) Scheme option 56 Tsai, Tzu-Chin, and Jen-Ping Chen: Multimoment ice bulk microphysics scheme with consideration for particle shape and apparent density. Part I: Methodology and idealized simulation J. Atmos. Sci., 77-5, 1821-1850.
doi:10.1175/JAS-D-19-0125.1


Go to top of page





Planetary Boundary Layer (PBL) Physics Options (bl_pbl_physics)

Yonsei University Scheme (YSU) option 1 Hong, Song–You, Yign Noh, Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi:10.1175/MWR3199.1
PDF
Mellor–Yamada–Janjic Scheme (MYJ) option 2 Janjic, Zavisa I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. doi:10.1175/1520-0493(1994)122%3c0927:TSMECM%3e2.0.CO;2
PDF

Mesinger, F., 1993: Forecasting upper tropospheric turbulence within the framework of the Mellor-Yamada 2.5 closure. Res. Activ. in Atmos. and Ocean. Mod., WMO, Geneva, CAS/JSC WGNE Rep. No. 18, 4.28-4.29.
PDF
NCEP Global Forecast System Scheme option 3 Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339. doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.
PDF
Quasi–normal Scale Elimination (QNSE) Scheme option 4 Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice. Bound.–Layer Meteor., 117, 231–257. doi:10.1007/s10546-004-6848-4
PDF
Mellor–Yamada Nakanishi Niino (MYNN) Level 2.5 and Level 3 Schemes options 5 & 6 Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Bound. Layer Meteor. 119, 397–407. doi:10.1007/s10546-005-9030-8
PDF

Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895–912. doi:10.2151/jmsj.87.895
PDF

Olson, Joseph B., Jaymes S. Kenyon, Wayne M. Angevine, John M . Brown, Mariusz Pagowski, and Kay Sušelj, 2019: A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF–ARW. NOAA Technical Memorandum OAR GSD, 61, pp. 37.
doi:10.25923/n9wm-be49
PDF
Asymmetric Convection Model 2 Scheme (ACM2) option 7 Pleim, Jonathan E., 2007: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteor. Climatol., 46, 1383–1395. doi:10.1175/JAM2539.1
PDF
Bougeault–Lacarrere Scheme (BouLac) option 8 Bougeault, P., P. Lacarrere, 1989: Parameterization of Orography–Induced Turbulence in a Mesobeta––Scale Model. Mon. Wea. Rev., 117, 1872–1890. doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
PDF
University of Washington (TKE) Boundary Layer Scheme option 9 Bretherton, Christopher S., and Sungsu Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 3422–3448. doi:10.1175/2008JCLI2556.1
PDF
TEMF Scheme option 10 Angevine, Wayne M., Hongli Jiang, and Thorsten Mauritsen, 2010: Performance of an eddy diffusivity–mass flux scheme for shallow cumulus boundary layers. Mon. Wea. Rev., 138, 2895–2912. doi:10.1175/2010MWR3142.1
PDF
Shin-Hong Scale–aware Scheme option 11 Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271. doi:10.1175/MWR-D-14-00116.1
PDF
Grenier–Bretherton–McCaa Scheme option 12 Grenier, Herve, and Christopher S. Bretherton, 2001: A moist PBL parameterization for large–scale models and its application to subtropical cloud–topped marine boundary layers. Mon. Wea. Rev., 129, 357–377. doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2
PDF
TKE (E)-TKE Dissipation Rate (Epsilon) (EEPS) option 16 Zhang, C., Y. Wang and M. Xue, 2020: Evaluation of an E–ε and Three Other Boundary Layer Parameterization Schemes in the WRF Model over the Southeast Pacific and the Southern Great Plains. Mon. Wea. Rev.,148, 1121–1145. https://doi.org/10.1175/MWR-D-19-0084.1
K-epsilon-theta^2 (KEPS) option 17 Zonato, Andrea, A. Martilli, P. A. Jimenez, J. Dudhia, D. Zardi, and L. Giovannini, A new K-epsilon turbulence parameterization for mesoscale meteorological models. Mon. Wea. Rev., 150, 2157–2174. doi:10.1175/MWR-D-21-0299.1
PDF
MRF Scheme option 99 Hong, S.–Y., and H.–L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium–range forecast model. Mon. Wea. Rev., 124, 2322–2339. doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
PDF
Gravity Wave Drag gwd_opt = 1 Hong, Song–You, Jung Choi, Eun-Chul Chang, Hoon Park, and Young-Joon Kim, 2008: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523–531. doi:10.1175/2007WAF2007030.1
PDF

Kim, Young-Joon, and Akio Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902. doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2
PDF

Choi H, Hong S, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res., 120 doi:10.1002/2015JD024230
PDF
Wind–farm (drag) Surface Layer Parameterization Scheme windturbine_spec Fitch, Anna C., Joseph B. Olson, Julie K. Lundquist, Jimy Dudhia, Alok K. Gupta, John Michalakes, and Idar Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 3017–3038. doi:10.1175/MWR-D-11-00352.1
PDF
FogDES Scheme
(details)
grav_settling = 2 Katata, G. (2014), Fogwater deposition modeling for terrestrial ecosystems: A review of developments and measurements, J. Geophys. Res. Atmos., 119, 8137–8159 doi:10.1002/2014JD021669
PDF


Go to top of page





Cumulus Parameterization Options (cu_physics)

Kain–Fritsch Scheme option 1 Kain, John S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
PDF
Moisture–advection–based Trigger for Kain–Fritsch Cumulus Scheme kfeta_trigger = 2 Ma, Lei–Ming, and Zhe–Min Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190–211.
doi:10.1016/j.atmosres.2008.09.022
PDF
RH–dependent Additional Perturbation to option 1 for the Kain-Fritsch Scheme kfeta_trigger = 3
Betts–Miller–Janjic Scheme option 2 Janjic, Zavisa I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.
doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
PDF
Grell–Freitas Ensemble Scheme option 3 Grell, G. A. and Freitas, S. R., 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233-5250, doi:10.5194/acp-14-5233-2014.
Grell and Freitas, 2014
PDF
Old Simplified Arakawa–Schubert Scheme option 4 Pan, H. L., and W. S. Wu., 1995: Implementing a mass flux convective parameterization package for the NMC medium range forecast model. NMC office note, 409.40, 20–233.
Pan et al., 1995
PDF
Grell 3D Ensemble Scheme option 5 Grell, Georg A., 1993: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Wea. Rev., 121, 764–787.
doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
PDF

Grell, G. A, D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693. doi:10.1029/2002GL015311
PDF
Tiedtke Scheme option 6 Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large–scale models. Mon. Wea. Rev., 117, 1779–1800.
doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
PDF

Zhang, Chunxi, Yuqing Wang, and Kevin Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513.
doi:10.1175/MWR-D-10-05091.1
PDF
Zhang–McFarlane Scheme option 7 Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.– Ocean, 33, 407–446. doi:10.1080/07055900.1995.9649539
PDF
Kain–Fritsch
Cumulus Potential Scheme
option 10 Berg, L.K., W.I. Gustafson, E.I. Kassianov, E.I., and L. Deng, 2013: Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Wea. Rev., 141, 134-147.
doi:10.1175/MWR-D-12-000136.1
PDF
Multi–scale Kain–Fritsch Scheme option 11 Zheng, Yue, K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev.,117-3, 833-860.
doi:10.1175/MWR-D-15-0005.1
PDF

Glotfelty, T., K. Alapaty, J. He, P. Hawbecker, X. Song, and G. Zhang, 2019: The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI): Development, evaluation, and initial application. Mon. Wea. Rev. , 147, 1491-1511.
doi:10.1175/MWR-D-18-0267.1
PDF
New Simplified Arakawa–Schubert Scheme (for Basic WRF) option 14 Han, Jongil and Hua–Lu Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533. doi:10.1175/WAF-D-10-05038.1
PDF

After V4.0
Kwon, Y.-C. and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev. 145, 585-598.
doi:10.1175/MWR-D-16-0034.1
PDF
New Tiedtke Scheme option 16 Zhang, C. and Y. Wang, 2017: Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Climate, 30, 5923-5941.
doi:10.1175/JCLI-D-16-0597.1
PDF
New Simplified Arakawa-Schubert Scheme (for HWRF) option 84 Han, Jongil and Hua–Lu Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533. doi:10.1175/WAF-D-10-05038.1
PDF
Grell–Devenyi (GD) Ensemble Scheme option 93 Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14).
doi:10.1029/2002GL015311
PDF
Old Kain–Fritsch Scheme option 99 Kain, John S., and J. Michael Fritsch, 1990: A one–dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.
doi:10.1175/1520-0469(1990)047<2785:AODEPM>2.0.CO.2;
PDF


Go to top of page





Shortwave (ra_sw_physics) and Longwave (ra_lw_physics) Options

Dudhia Shortwave Scheme sw option 1 Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci., 46, 3077–3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
PDF
RRTM Longwave Scheme lw option 1 Mlawer, Eli. J., Steven. J. Taubman, Patrick. D. Brown, M. J. Iacono, and S. A. Clough,1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J. Geophys. Res., 102, 16663–16682. doi:10.1029/97JD00237
PDF
Goddard Shortwave Scheme sw option 2 Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3, 85pp.
PDF

Matsui, T., S. Q. Zhang, W.-K. Tao, S. Lang, C. Ichoku, and C. Peters-Lidard, 2018: Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African Monsoon simulations. Clim. Dyn., 1-21.
doi:10.1007/s00382-018-4187-2
CAM Shortwave and Longwave Schemes lw/sw option 3 Collins, William D., et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN–464+STR. 214 pp.
PDF
RRTMG Shortwave and Longwave Schemes lw/sw option 4 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. doi:10.1029/2008JD009944
PDF
New Goddard Shortwave and Longwave Schemes lw/sw option 5 Chou, M. D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. 104606, 15, 40 pp.
PDF

Chou, M. D., M. J. Suarez, X. Z. Liang, and M. M. H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo., 104606, 19, 68 pp.
PDF
Fu–Liou–Gu Shortwave and Longwave Schemes lw/sw option 7 Gu, Y., Liou, K. N., Ou, S. C., and Fovell, R., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119.
doi:10.1029/2010JD014574
PDF

Fu, Qiang, and K. N. Liou, 1992: On the correlated k–distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.
doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
PDF
RRTMG–K Shortwave and Longwave Schemes lw/sw option 14 Baek, Sunghye, 2017, A revised radiation package of G–packed McICA and two–stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9. doi:10.1002/2017MS000994
PDF
Held–Suarez Relaxation Longwave Scheme sw option 31
GFDL Shortwave and Longwave Schemes lw/sw option 99 Fels, Stephen. B., and M. D. Schwarzkopf, 1981, An efficient, accurate algorithm for calculating CO2 15 µm band cooling rates. J. Geophys. Res., 86, 1205–1232. doi:10.1029/JC086iC02p01205
PDF


Go to top of page





Land Surface Options (sf_surface_physics)

5–layer Thermal Diffusion Scheme option 1 Dudhia, Jimy, 1996: A multi-layer soil temperature model for MM5. the Sixth PSU/NCAR Mesoscale Model Users' Workshop.
PDF
Unified Noah Land Surface Model option 2 Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
PDF
RUC Land Surface Model option 3 Benjamin, Stanley G., Georg A. Grell, John M. Brown, and Tatiana G. Smirnova, 2004: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132, 473-494.
doi:10.1175/1520-0493(2004)132<0473:MWPWTF>2.0.CO;2
PDF
https://doi.org/10.25923/55x8-cy36
Noah–MP Land Surface Model option 4 Niu, Guo–Yue, Zong–Liang Yang, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil Kumar, Kevin Manning, Dev Niyogi, Enrique Rosero, Mukul Tewari, Youlong Xia, 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res., 116, D12109. doi:10.1029/2010JD015139
PDF

Yang, Z.–L., G.–Y. Niu, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, L. Longuevergne, K. Manning, D. Niyogi, M. Tewari, and Y. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110. doi:10.1029/2010JD015140
PDF

He et al., 2023: The community Noah–MP land surface modeleling system technical description Version 5.0 No. NCAR/TN-575+STR.
doi:10.5065/ew8g-yr95
PDF
Community Land Model Version 4 (CLM4) option 5 Oleson, Keith W., et al., 2010: Technical description of version 4 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN–478+STR. 266 pp.
PDF

Lawrence, D. M., et al., 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001. doi:10.1029/2011MS00045
PDF

An earlier version of CLM has been quantitatively evaluated within WRF, referenced here:

Jin, J., and L. Wen, 2012: Evaluation of snowmelt simulation in the Weather Research and Forecasting model. J. Geophys. Res., 117, D10110.
doi:10.1029/2011JD016980
PDF

Lu, Y., and L. M. Kueppers, 2012: Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3–Community Land Model 3.5). J. Geophys. Res., 117, D06111. doi:10.1029/2011JD016991
PDF

Subin, Z. M., W. J. Riley, J. Jin, D. S. Christianson, M. S. Torn, and L. M. Kueppers, 2011: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3–CLM3.5). Earth Interac., 15, 15.
doi:10.1175/2010EI331.1
PDF
Pleim–Xiu Land Surface Model option 7 Noilan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536-549.
doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
PDF

Pleim, J. E., and A. Xiu, 1995: Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34, 16-32.
doi:10.1175/1520-0450-34.1.16
PDF

Xiu, Aijun, and J. E. Pleim, 2001: Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model. J. Appl. Meteor., 40, 192–209.
doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2
PDF

Pleim, J. E., and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42, 1811-1822. doi:10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2
PDF

Pleim, J. E., and R. Gilliam, 2009: An indirect data assimilation scheme for deep soil temperature in the Pleim-Xiu land surface model. J. Appl. Meteor. Climatol., 48, 1362-1376. doi:10.1175/2009JAMC2053.1
PDF

Gilliam, R. C., and J. E. Pleim, 2010: Performance assessment of new land-surface and planetary boundary layer physics in the WRF-ARW. J. App. Meteor. Climatol., 49(4), 760-774. doi:10.1175/2009JAMC2126.1
PDF
Simplified Simple Biosphere (SSiB) Land Surface Model option 8 Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345–364. doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2
PDF

Sun, S., and Y. Xue, 2001: Implementing a new snow scheme in Simplified Simple Biosphere Model (SSiB), Adv. Atmos. Sci., 18, 335–354.
doi:10.1007/BF02919314
PDF
University of Arizona Snow Physics for Noah ua_phys = .true. Wang, Z., X. Zeng, and M. Decker, 2010: Improving snow processes in the Noah land model, J. Geophys. Res., 115, D20108. doi:10.1029/2009JD013761
PDF
Sub-tiling option for Noah LSM sf_surface_mosaic = 1 Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, 2013: Development and Evaluation of a Mosaic Approach in the WRF-Noah Framework. J. Geophys. Res., 118,11,918-11,11,935. doi:10.1002/2013JD02065
PDF


Go to top of page





Shallow Cumulus Options (shcu_physics)

University of Washington Scheme option 2 Park, Sungsu, and Christopher S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 3449–3469.
doi:10.1175/2008JCLI2557.1
PDF
Global/Regional Integrated Modeling System (GRIMS) Scheme option 3 Hong, SY. & JH Jang, 2018: Impacts of shallow convection processes on a simulated Boreal summer climatology in a global atmospheric model. J. Asia-Pacific J Atmos Sci (2018) 54(Suppl 1): 361.
doi:10.1007/s13143-018-0013-3
Deng Scheme option 5 Deng, A., N. L. Seaman, and J. S. Kain, 2003: A shallow-convection parameterization for mesoscale models. Part I: Submodel description and preliminary applications. J. Atmos. Sci., 60, 3456.
doi:10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2
PDF


Go to top of page





Surface Layer Options (sf_sfclay_physics)

Revised MM5 Scheme option 1 Jimenez, Pedro A., Jimy Dudhia, J. Fidel Gonzalez–Rouco, Jorge Navarro, Juan P. Montavez, and Elena Garcia–Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898–918. doi:10.1175/MWR-D-11-00056.1
PDF
Eta Similarity Scheme option 2 Monin A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187 (in Russian)
PDF

Janjic, Z. I., 1994: The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
PDF

Janjic, Z. I., 1996: The surface layer in the NCEP Eta Model. Eleventh conference on numerical weather prediction, Norfolk, VA, 19–23 August 1996. Amer Meteor Soc, Boston, MA, pp 354–355.
PDF

Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61 pp.
PDF
NCEP Global Forecast System Scheme option 3
QNSE Scheme option 4
MYNN Scheme option 5 Olson et al., 2021
Pleim–Xiu Scheme option 7 Pleim, J. E., 2006: A simple, efficient solution of flux-profile relationships in the atmospheric surface layer, J. Appl. Meteor. and Clim., 45, 341–347.
doi:10.1175/JAM2339.1
PDF
TEMF Scheme option 10 Angevine, Wayne M., Hongli Jiang, and Thorsten Mauritsen, 2010: Performance of an eddy diffusivity–mass flux scheme for shallow cumulus boundary layers. Mon. Wea. Rev., 138, 2895–2912. doi:10.1175/2010MWR3142.1
PDF
MM5 Similarity Scheme option 91 Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857–861.
doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
PDF

Dyer, A. J., and B. B. Hicks, 1970: Flux–gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715–721. doi:10.1002/qj.49709641012
PDF

Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67–90.
doi:10.1002/qj.49709640708
PDF

Beljaars, A.C.M., 1994: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270.
doi:10.1002/qj.49712152203
PDF

Zhang, D.–L., and R.A. Anthes, 1982: A high–resolution model of the planetary boundary layer– sensitivity tests and comparisons with SESAME–79 data. J. Appl. Meteor., 21, 1594–1609. doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2
PDF
topo_wind: Topographic Correction for Surface Winds to Represent Extra Drag from Sub–grid Topography and Enhanced Flow at Hill Tops topo_wind = 1 or 2 Jimenez, Pedro A., and Jimy Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300–316.
doi:10.1175/JAMC-D-11-084.1
PDF
Chen–Zhang Modified Zilitinkevich Thermal Roughness Length iz0tlnd Chen, F. and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404. doi:10.1029/2009GL037980
PDF


Go to top of page





Urban Surface Options (sf_urban_physics)

Urban Canopy Model option 1 Chen, F., H. Kusaka, R. Bornstain, J. Ching, C.S.B. Grimmond, S. Grossman-Clarke, T. Loridan, K. Manning, A. Martilli, S. Miao, D. Sailor, F. Salamanca, H. Taha, M. Tewari, X. Wang, A. Wyszogrodzki, and C. Zhang, 2011: The integrated WRF/urban modeling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31, 273-288. DOI: 10.1002/joc.2158.
doi:10.1002/joc.2158
PDF
Building Environment Parameterization (BEP) and Building Energy Model (BEM) Schemes options 2 & 3 Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations––part II. Validation with one dimension off–line simulations. Theor. Appl. Climatol., 99, 345–356.
doi:10.1007/s00704-009-0143-8
PDF

Martilli A, Clappier A, and Rotach M.W., 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteorol., 104, 261–304.
doi:10.1023/A:1016099921195
PDF


Go to top of page





Ocean Model Options (sf_ocean_physics)

Simple Mixed–layer Ocean Model option 1 Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind–mixed layer. Geophys. Fluid. Dyn., 3, 381–404. doi:10.1080/03091927208236105
Price–Weller–Pinkel 3–D Ocean Model option 2 Price, J. F., 1981: Upper Ocean Response to a Hurricane. J. Phy. Oceanogr., 11, 153–175.
doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
PDF

Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phy. Oceanogr., 24, 233–260. doi:10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
PDF

Chia-Ying Lee and Shuyi S. Chen, 2012: Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 3576–3594. doi: http://dx.doi.org/10.1175/JAS-D-12-046.1 doi:10.1175/JAS-D-12-046.1
PDF


Go to top of page





Other Model Options

Analysis Nudging (FDDA) grid_fdda = 1 Stauffer D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416–434.
doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
PDF

Liu, Y., T.T. Warner, J. F. Bowers, L. P. Carson, F. Chen, C. A. Clough, C. A. Davis, C. H. Egeland, S. Halvorson, T.W. Huck Jr., L. Lachapelle, R.E. Malone, D. L. Rife, R.-S. Sheu, S. P. Swerdlin, and D.S. Weingarten, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part 1: Overview of the modeling system, the forecast products. J. Appl. Meteor. Clim., 47, 1077–1092.
doi:10.1175/2007JAMC1653.1
PDF
Spectral Nudging grid_fdda = 2 Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104.
doi:10.1029/2003JD004495
PDF
Observational Nudging obs_nudge_opt=1 Liu, Y., T.T. Warner, J. F. Bowers, L. P. Carson, F. Chen, C. A. Clough, C. A. Davis, C. H. Egeland, S. Halvorson, T.W. Huck Jr., L. Lachapelle, R.E. Malone, D. L. Rife, R.-S. Sheu, S. P. Swerdlin, and D.S. Weingarten, 2008: The operational mesogamma–scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part 1: Overview of the modeling system, the forecast products. J. Appl. Meteor. Clim., 47, 1077–1092.
doi:10.1175/2007JAMC1653.1
PDF

Stauffer D. R., and N. L. Seaman, 1994: Multiscale four–dimensional data assimilation. J. Appl. Meteor., 33, 416–434.
doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
PDF

Xu, M., Y. Liu, C. Davis and T. Warner, 2002: Sensitivity study on nudging parameters for a mesoscale FDDA system. 19th Conference on Weather Analysis and Forecasting, and 15th Conference on Numerical Weather Prediction, 12–16 August, 2002, San Antonio, Texas, Amer. Meteror. Soc., 4B.4.
PDF
Stochastic–energy Backscatter Scheme stoch_force_opt = 1 Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q.J.R. Meteorol. Soc., 131, 3079–3102.
doi:10.1256/qj.04.106
PDF

Berner, J., S.–Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 1972–1995. doi:10.1175/2010MWR3595.1
PDF
Zaengl Radiation/Topography (Slope/Shadowing) slope_rad = 1 & topo_shading = 1 Zangl, Gunther, 2002: An Improved Method for Computing Horizontal Diffusion in a Sigma–Coordinate Model and Its Application to Simulations over Mountainous Topography. Mon. Wea. Rev., 130, 1423–1432.
doi:10.1175/1520-0493(2002)130<1423:AIMFCH>2.0.CO;2
PDF
CLM4.5 Lake Model sf_lake_physics = 1 Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, doi:10.1029/2011MS000072
PDF
Fast All-sky Radiation Model for Solar applications (FARMS) swint_opt = 2 Xie, Y., M. Sengupta and J. Dudhia, 2016: A Fast All-sky Radiation Model for Solar applicatins (FARMS): Algorithm and performance evaluation. Solar Energy, 135, 435 - 445.
PR92 Lightning Option lightning_option = 1, 2, or 11 Price, C. and D. Rind, 1992: Simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97(D9), 9919-9933. doi:10.1029/92JD00719

Wong, J., M. Barth, and D. Noone, 2012: Evaluating a Lightning parameterization at resolutions with partially-resolved convection, GMDD, in preparation. Geosci. Model Dev., 6, 429-443. doi:10.5194/gmd-6-429-2013
Yair et al. Lightning Option lightning_option = 3 Yair, Y. et al., 2010: Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields, J. Geophys. Res., 115, D04205, doi:10.1029/2008JD010868

Lynn, B., et al., 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models. Wea. Forecasting, 27:6, 1470-1488. doi:10.1175/WAF-D-11-00144.1
SMS-3DTKE Subgrid Mixing km_opt = 5 Zhang et al., 2018




LES References

Moeng, C.-H., J. Dudhia, J. B. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF Model. Mon. Wea. Rev., 135, 2295–2311. doi: http://dx.doi.org/10.1175/MWR3406.1

Mirocha, J. D., J. K. Lundquist, and B. Kosović, 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF Model. Mon. Wea. Rev., 138, 4212–4228. doi: http://dx.doi.org/10.1175/2010MWR3286.1




WRF Specialty Systems

WRF-Hydro Gochis, D.J., W. Yu, D.N. Yates, 2015: The WRF-Hydro Model Technical Description and User's Guide, Version 3.0. NCAR Tech. Document. 120 pp. Available online at: http://www.ral.ucar.edu/projects/wrf_hydro/
WRF-Fire Coen J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 16–38. doi: http://dx.doi.org/10.1175/JAMC-D-12-023.1


Go to top of page







 

 

 

 



 
 
Home –– Model System –– User Support –– Doc / Pub –– Links –– Download –– WRF Real–time Forecast