SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) 2,20
!
! -- LAPACK auxiliary routine (version 3.1) --
! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
! November 2006
!
! .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDW, N, NB
! ..
! .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
! ..
!
! Purpose
! =======
!
! DLATRD reduces NB rows and columns of a real symmetric matrix A to
! symmetric tridiagonal form by an orthogonal similarity
! transformation Q' * A * Q, and returns the matrices V and W which are
! needed to apply the transformation to the unreduced part of A.
!
! If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
! matrix, of which the upper triangle is supplied;
! if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
! matrix, of which the lower triangle is supplied.
!
! This is an auxiliary routine called by DSYTRD.
!
! Arguments
! =========
!
! UPLO (input) CHARACTER*1
! Specifies whether the upper or lower triangular part of the
! symmetric matrix A is stored:
! = 'U': Upper triangular
! = 'L': Lower triangular
!
! N (input) INTEGER
! The order of the matrix A.
!
! NB (input) INTEGER
! The number of rows and columns to be reduced.
!
! A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
! On entry, the symmetric matrix A. If UPLO = 'U', the leading
! n-by-n upper triangular part of A contains the upper
! triangular part of the matrix A, and the strictly lower
! triangular part of A is not referenced. If UPLO = 'L', the
! leading n-by-n lower triangular part of A contains the lower
! triangular part of the matrix A, and the strictly upper
! triangular part of A is not referenced.
! On exit:
! if UPLO = 'U', the last NB columns have been reduced to
! tridiagonal form, with the diagonal elements overwriting
! the diagonal elements of A; the elements above the diagonal
! with the array TAU, represent the orthogonal matrix Q as a
! product of elementary reflectors;
! if UPLO = 'L', the first NB columns have been reduced to
! tridiagonal form, with the diagonal elements overwriting
! the diagonal elements of A; the elements below the diagonal
! with the array TAU, represent the orthogonal matrix Q as a
! product of elementary reflectors.
! See Further Details.
!
! LDA (input) INTEGER
! The leading dimension of the array A. LDA >= (1,N).
!
! E (output) DOUBLE PRECISION array, dimension (N-1)
! If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
! elements of the last NB columns of the reduced matrix;
! if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
! the first NB columns of the reduced matrix.
!
! TAU (output) DOUBLE PRECISION array, dimension (N-1)
! The scalar factors of the elementary reflectors, stored in
! TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
! See Further Details.
!
! W (output) DOUBLE PRECISION array, dimension (LDW,NB)
! The n-by-nb matrix W required to update the unreduced part
! of A.
!
! LDW (input) INTEGER
! The leading dimension of the array W. LDW >= max(1,N).
!
! Further Details
! ===============
!
! If UPLO = 'U', the matrix Q is represented as a product of elementary
! reflectors
!
! Q = H(n) H(n-1) . . . H(n-nb+1).
!
! Each H(i) has the form
!
! H(i) = I - tau * v * v'
!
! where tau is a real scalar, and v is a real vector with
! v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
! and tau in TAU(i-1).
!
! If UPLO = 'L', the matrix Q is represented as a product of elementary
! reflectors
!
! Q = H(1) H(2) . . . H(nb).
!
! Each H(i) has the form
!
! H(i) = I - tau * v * v'
!
! where tau is a real scalar, and v is a real vector with
! v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
! and tau in TAU(i).
!
! The elements of the vectors v together form the n-by-nb matrix V
! which is needed, with W, to apply the transformation to the unreduced
! part of the matrix, using a symmetric rank-2k update of the form:
! A := A - V*W' - W*V'.
!
! The contents of A on exit are illustrated by the following examples
! with n = 5 and nb = 2:
!
! if UPLO = 'U': if UPLO = 'L':
!
! ( a a a v4 v5 ) ( d )
! ( a a v4 v5 ) ( 1 d )
! ( a 1 v5 ) ( v1 1 a )
! ( d 1 ) ( v1 v2 a a )
! ( d ) ( v1 v2 a a a )
!
! where d denotes a diagonal element of the reduced matrix, a denotes
! an element of the original matrix that is unchanged, and vi denotes
! an element of the vector defining H(i).
!
! =====================================================================
!
! .. Parameters ..
DOUBLE PRECISION ZERO, ONE, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 )
! ..
! .. Local Scalars ..
INTEGER I, IW
DOUBLE PRECISION ALPHA
! ..
! .. External Subroutines ..
! EXTERNAL DAXPY, DGEMV, DLARFG, DSCAL, DSYMV
! ..
! .. External Functions ..
! LOGICAL LSAME
! DOUBLE PRECISION DDOT
! EXTERNAL LSAME, DDOT
! ..
! .. Intrinsic Functions ..
INTRINSIC MIN
! ..
! .. Executable Statements ..
!
! Quick return if possible
!
IF( N.LE.0 ) &
RETURN
!
IF( LSAME( UPLO, 'U' ) ) THEN
!
! Reduce last NB columns of upper triangle
!
DO 10 I = N, N - NB + 1, -1
IW = I - N + NB
IF( I.LT.N ) THEN
!
! Update A(1:i,i)
!
CALL DGEMV
( 'No transpose', I, N-I, -ONE, A( 1, I+1 ), &
LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
CALL DGEMV
( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ), &
LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
END IF
IF( I.GT.1 ) THEN
!
! Generate elementary reflector H(i) to annihilate
! A(1:i-2,i)
!
CALL DLARFG
( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
E( I-1 ) = A( I-1, I )
A( I-1, I ) = ONE
!
! Compute W(1:i-1,i)
!
CALL DSYMV
( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1, &
ZERO, W( 1, IW ), 1 )
IF( I.LT.N ) THEN
CALL DGEMV
( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ), &
LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
CALL DGEMV
( 'No transpose', I-1, N-I, -ONE, &
A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE, &
W( 1, IW ), 1 )
CALL DGEMV
( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ), &
LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
CALL DGEMV
( 'No transpose', I-1, N-I, -ONE, &
W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE, &
W( 1, IW ), 1 )
END IF
CALL DSCAL
( I-1, TAU( I-1 ), W( 1, IW ), 1 )
ALPHA = -HALF*TAU( I-1 )*DDOT( I-1, W( 1, IW ), 1, &
A( 1, I ), 1 )
CALL DAXPY
( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
END IF
!
10 CONTINUE
ELSE
!
! Reduce first NB columns of lower triangle
!
DO 20 I = 1, NB
!
! Update A(i:n,i)
!
CALL DGEMV
( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ), &
LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
CALL DGEMV
( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ), &
LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
IF( I.LT.N ) THEN
!
! Generate elementary reflector H(i) to annihilate
! A(i+2:n,i)
!
CALL DLARFG
( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1, &
TAU( I ) )
E( I ) = A( I+1, I )
A( I+1, I ) = ONE
!
! Compute W(i+1:n,i)
!
CALL DSYMV
( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA, &
A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
CALL DGEMV
( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW, &
A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
CALL DGEMV
( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ), &
LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
CALL DGEMV
( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA, &
A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
CALL DGEMV
( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ), &
LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
CALL DSCAL
( N-I, TAU( I ), W( I+1, I ), 1 )
ALPHA = -HALF*TAU( I )*DDOT( N-I, W( I+1, I ), 1, &
A( I+1, I ), 1 )
CALL DAXPY
( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
END IF
!
20 CONTINUE
END IF
!
RETURN
!
! End of DLATRD
!
END SUBROUTINE DLATRD