SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO ) 2,10
!
! -- LAPACK routine (version 3.1) --
! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
! November 2006
!
! .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
! ..
! .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * )
! ..
!
! Purpose
! =======
!
! DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
! form T by an orthogonal similarity transformation: Q' * A * Q = T.
!
! Arguments
! =========
!
! UPLO (input) CHARACTER*1
! Specifies whether the upper or lower triangular part of the
! symmetric matrix A is stored:
! = 'U': Upper triangular
! = 'L': Lower triangular
!
! N (input) INTEGER
! The order of the matrix A. N >= 0.
!
! A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
! On entry, the symmetric matrix A. If UPLO = 'U', the leading
! n-by-n upper triangular part of A contains the upper
! triangular part of the matrix A, and the strictly lower
! triangular part of A is not referenced. If UPLO = 'L', the
! leading n-by-n lower triangular part of A contains the lower
! triangular part of the matrix A, and the strictly upper
! triangular part of A is not referenced.
! On exit, if UPLO = 'U', the diagonal and first superdiagonal
! of A are overwritten by the corresponding elements of the
! tridiagonal matrix T, and the elements above the first
! superdiagonal, with the array TAU, represent the orthogonal
! matrix Q as a product of elementary reflectors; if UPLO
! = 'L', the diagonal and first subdiagonal of A are over-
! written by the corresponding elements of the tridiagonal
! matrix T, and the elements below the first subdiagonal, with
! the array TAU, represent the orthogonal matrix Q as a product
! of elementary reflectors. See Further Details.
!
! LDA (input) INTEGER
! The leading dimension of the array A. LDA >= max(1,N).
!
! D (output) DOUBLE PRECISION array, dimension (N)
! The diagonal elements of the tridiagonal matrix T:
! D(i) = A(i,i).
!
! E (output) DOUBLE PRECISION array, dimension (N-1)
! The off-diagonal elements of the tridiagonal matrix T:
! E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
!
! TAU (output) DOUBLE PRECISION array, dimension (N-1)
! The scalar factors of the elementary reflectors (see Further
! Details).
!
! INFO (output) INTEGER
! = 0: successful exit
! < 0: if INFO = -i, the i-th argument had an illegal value.
!
! Further Details
! ===============
!
! If UPLO = 'U', the matrix Q is represented as a product of elementary
! reflectors
!
! Q = H(n-1) . . . H(2) H(1).
!
! Each H(i) has the form
!
! H(i) = I - tau * v * v'
!
! where tau is a real scalar, and v is a real vector with
! v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
! A(1:i-1,i+1), and tau in TAU(i).
!
! If UPLO = 'L', the matrix Q is represented as a product of elementary
! reflectors
!
! Q = H(1) H(2) . . . H(n-1).
!
! Each H(i) has the form
!
! H(i) = I - tau * v * v'
!
! where tau is a real scalar, and v is a real vector with
! v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
! and tau in TAU(i).
!
! The contents of A on exit are illustrated by the following examples
! with n = 5:
!
! if UPLO = 'U': if UPLO = 'L':
!
! ( d e v2 v3 v4 ) ( d )
! ( d e v3 v4 ) ( e d )
! ( d e v4 ) ( v1 e d )
! ( d e ) ( v1 v2 e d )
! ( d ) ( v1 v2 v3 e d )
!
! where d and e denote diagonal and off-diagonal elements of T, and vi
! denotes an element of the vector defining H(i).
!
! =====================================================================
!
! .. Parameters ..
DOUBLE PRECISION ONE, ZERO, HALF
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0, &
HALF = 1.0D0 / 2.0D0 )
! ..
! .. Local Scalars ..
LOGICAL UPPER
INTEGER I
DOUBLE PRECISION ALPHA, TAUI
! ..
! .. External Subroutines ..
! EXTERNAL DAXPY, DLARFG, DSYMV, DSYR2, XERBLA
! ..
! .. External Functions ..
! LOGICAL LSAME
! DOUBLE PRECISION DDOT
! EXTERNAL LSAME, DDOT
! ..
! .. Intrinsic Functions ..
INTRINSIC MAX, MIN
! ..
! .. Executable Statements ..
!
! Test the input parameters
!
INFO = 0
UPPER = LSAME
( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA
( 'DSYTD2', -INFO )
RETURN
END IF
!
! Quick return if possible
!
IF( N.LE.0 ) &
RETURN
!
IF( UPPER ) THEN
!
! Reduce the upper triangle of A
!
DO 10 I = N - 1, 1, -1
!
! Generate elementary reflector H(i) = I - tau * v * v'
! to annihilate A(1:i-1,i+1)
!
CALL DLARFG
( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
E( I ) = A( I, I+1 )
!
IF( TAUI.NE.ZERO ) THEN
!
! Apply H(i) from both sides to A(1:i,1:i)
!
A( I, I+1 ) = ONE
!
! Compute x := tau * A * v storing x in TAU(1:i)
!
CALL DSYMV
( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO, &
TAU, 1 )
!
! Compute w := x - 1/2 * tau * (x'*v) * v
!
ALPHA = -HALF*TAUI*DDOT( I, TAU, 1, A( 1, I+1 ), 1 )
CALL DAXPY
( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
!
! Apply the transformation as a rank-2 update:
! A := A - v * w' - w * v'
!
CALL DSYR2
( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A, &
LDA )
!
A( I, I+1 ) = E( I )
END IF
D( I+1 ) = A( I+1, I+1 )
TAU( I ) = TAUI
10 CONTINUE
D( 1 ) = A( 1, 1 )
ELSE
!
! Reduce the lower triangle of A
!
DO 20 I = 1, N - 1
!
! Generate elementary reflector H(i) = I - tau * v * v'
! to annihilate A(i+2:n,i)
!
CALL DLARFG
( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1, &
TAUI )
E( I ) = A( I+1, I )
!
IF( TAUI.NE.ZERO ) THEN
!
! Apply H(i) from both sides to A(i+1:n,i+1:n)
!
A( I+1, I ) = ONE
!
! Compute x := tau * A * v storing y in TAU(i:n-1)
!
CALL DSYMV
( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA, &
A( I+1, I ), 1, ZERO, TAU( I ), 1 )
!
! Compute w := x - 1/2 * tau * (x'*v) * v
!
ALPHA = -HALF*TAUI*DDOT( N-I, TAU( I ), 1, A( I+1, I ), &
1 )
CALL DAXPY
( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
!
! Apply the transformation as a rank-2 update:
! A := A - v * w' - w * v'
!
CALL DSYR2
( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1, &
A( I+1, I+1 ), LDA )
!
A( I+1, I ) = E( I )
END IF
D( I ) = A( I, I )
TAU( I ) = TAUI
20 CONTINUE
D( N ) = A( N, N )
END IF
!
RETURN
!
! End of DSYTD2
!
END SUBROUTINE DSYTD2