SUBROUTINE DSTERF( N, D, E, INFO ) 1,21
!
! -- LAPACK routine (version 3.1) --
! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
! November 2006
!
! .. Scalar Arguments ..
INTEGER INFO, N
! ..
! .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * )
! ..
!
! Purpose
! =======
!
! DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
! using the Pal-Walker-Kahan variant of the QL or QR algorithm.
!
! Arguments
! =========
!
! N (input) INTEGER
! The order of the matrix. N >= 0.
!
! D (input/output) DOUBLE PRECISION array, dimension (N)
! On entry, the n diagonal elements of the tridiagonal matrix.
! On exit, if INFO = 0, the eigenvalues in ascending order.
!
! E (input/output) DOUBLE PRECISION array, dimension (N-1)
! On entry, the (n-1) subdiagonal elements of the tridiagonal
! matrix.
! On exit, E has been destroyed.
!
! INFO (output) INTEGER
! = 0: successful exit
! < 0: if INFO = -i, the i-th argument had an illegal value
! > 0: the algorithm failed to find all of the eigenvalues in
! a total of 30*N iterations; if INFO = i, then i
! elements of E have not converged to zero.
!
! =====================================================================
!
! .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, &
THREE = 3.0D0 )
INTEGER MAXIT
PARAMETER ( MAXIT = 30 )
! ..
! .. Local Scalars ..
INTEGER I, ISCALE, JTOT, L, L1, LEND, LENDSV, LSV, M, &
NMAXIT
DOUBLE PRECISION ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC, &
OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN, &
SIGMA, SSFMAX, SSFMIN
! ..
! .. External Functions ..
! DOUBLE PRECISION DLAMCH, DLANST, DLAPY2
! EXTERNAL DLAMCH, DLANST, DLAPY2
! ..
! .. External Subroutines ..
! EXTERNAL DLAE2, DLASCL, DLASRT, XERBLA
! ..
! .. Intrinsic Functions ..
INTRINSIC ABS, SIGN, SQRT
! ..
! .. Executable Statements ..
!
! Test the input parameters.
!
INFO = 0
!
! Quick return if possible
!
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA
( 'DSTERF', -INFO )
RETURN
END IF
IF( N.LE.1 ) &
RETURN
!
! Determine the unit roundoff for this environment.
!
EPS = DLAMCH
( 'E' )
EPS2 = EPS**2
SAFMIN = DLAMCH
( 'S' )
SAFMAX = ONE / SAFMIN
SSFMAX = SQRT( SAFMAX ) / THREE
SSFMIN = SQRT( SAFMIN ) / EPS2
!
! Compute the eigenvalues of the tridiagonal matrix.
!
NMAXIT = N*MAXIT
SIGMA = ZERO
JTOT = 0
!
! Determine where the matrix splits and choose QL or QR iteration
! for each block, according to whether top or bottom diagonal
! element is smaller.
!
L1 = 1
!
10 CONTINUE
IF( L1.GT.N ) &
GO TO 170
IF( L1.GT.1 ) &
E( L1-1 ) = ZERO
DO 20 M = L1, N - 1
IF( ABS( E( M ) ).LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+ &
1 ) ) ) )*EPS ) THEN
E( M ) = ZERO
GO TO 30
END IF
20 CONTINUE
M = N
!
30 CONTINUE
L = L1
LSV = L
LEND = M
LENDSV = LEND
L1 = M + 1
IF( LEND.EQ.L ) &
GO TO 10
!
! Scale submatrix in rows and columns L to LEND
!
ANORM = DLANST
( 'I', LEND-L+1, D( L ), E( L ) )
ISCALE = 0
IF( ANORM.GT.SSFMAX ) THEN
ISCALE = 1
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, &
INFO )
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, &
INFO )
ELSE IF( ANORM.LT.SSFMIN ) THEN
ISCALE = 2
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, &
INFO )
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, &
INFO )
END IF
!
DO 40 I = L, LEND - 1
E( I ) = E( I )**2
40 CONTINUE
!
! Choose between QL and QR iteration
!
IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
LEND = LSV
L = LENDSV
END IF
!
IF( LEND.GE.L ) THEN
!
! QL Iteration
!
! Look for small subdiagonal element.
!
50 CONTINUE
IF( L.NE.LEND ) THEN
DO 60 M = L, LEND - 1
IF( ABS( E( M ) ).LE.EPS2*ABS( D( M )*D( M+1 ) ) ) &
GO TO 70
60 CONTINUE
END IF
M = LEND
!
70 CONTINUE
IF( M.LT.LEND ) &
E( M ) = ZERO
P = D
( L )
IF( M.EQ.L ) &
GO TO 90
!
! If remaining matrix is 2 by 2, use DLAE2 to compute its
! eigenvalues.
!
IF( M.EQ.L+1 ) THEN
RTE = SQRT( E( L ) )
CALL DLAE2
( D( L ), RTE, D( L+1 ), RT1, RT2 )
D( L ) = RT1
D( L+1 ) = RT2
E( L ) = ZERO
L = L + 2
IF( L.LE.LEND ) &
GO TO 50
GO TO 150
END IF
!
IF( JTOT.EQ.NMAXIT ) &
GO TO 150
JTOT = JTOT + 1
!
! Form shift.
!
RTE = SQRT( E( L ) )
SIGMA = ( D( L+1 )-P ) / ( TWO*RTE )
R = DLAPY2
( SIGMA, ONE )
SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
!
C = ONE
S = ZERO
GAMMA = D
( M ) - SIGMA
P = GAMMA*GAMMA
!
! Inner loop
!
DO 80 I = M - 1, L, -1
BB = E( I )
R = P + BB
IF( I.NE.M-1 ) &
E( I+1 ) = S*R
OLDC = C
C = P / R
S = BB / R
OLDGAM = GAMMA
ALPHA = D
( I )
GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
D( I+1 ) = OLDGAM + ( ALPHA-GAMMA )
IF( C.NE.ZERO ) THEN
P = ( GAMMA*GAMMA ) / C
ELSE
P = OLDC*BB
END IF
80 CONTINUE
!
E( L ) = S*P
D( L ) = SIGMA + GAMMA
GO TO 50
!
! Eigenvalue found.
!
90 CONTINUE
D( L ) = P
!
L = L + 1
IF( L.LE.LEND ) &
GO TO 50
GO TO 150
!
ELSE
!
! QR Iteration
!
! Look for small superdiagonal element.
!
100 CONTINUE
DO 110 M = L, LEND + 1, -1
IF( ABS( E( M-1 ) ).LE.EPS2*ABS( D( M )*D( M-1 ) ) ) &
GO TO 120
110 CONTINUE
M = LEND
!
120 CONTINUE
IF( M.GT.LEND ) &
E( M-1 ) = ZERO
P = D
( L )
IF( M.EQ.L ) &
GO TO 140
!
! If remaining matrix is 2 by 2, use DLAE2 to compute its
! eigenvalues.
!
IF( M.EQ.L-1 ) THEN
RTE = SQRT( E( L-1 ) )
CALL DLAE2
( D( L ), RTE, D( L-1 ), RT1, RT2 )
D( L ) = RT1
D( L-1 ) = RT2
E( L-1 ) = ZERO
L = L - 2
IF( L.GE.LEND ) &
GO TO 100
GO TO 150
END IF
!
IF( JTOT.EQ.NMAXIT ) &
GO TO 150
JTOT = JTOT + 1
!
! Form shift.
!
RTE = SQRT( E( L-1 ) )
SIGMA = ( D( L-1 )-P ) / ( TWO*RTE )
R = DLAPY2
( SIGMA, ONE )
SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
!
C = ONE
S = ZERO
GAMMA = D
( M ) - SIGMA
P = GAMMA*GAMMA
!
! Inner loop
!
DO 130 I = M, L - 1
BB = E( I )
R = P + BB
IF( I.NE.M ) &
E( I-1 ) = S*R
OLDC = C
C = P / R
S = BB / R
OLDGAM = GAMMA
ALPHA = D
( I+1 )
GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
D( I ) = OLDGAM + ( ALPHA-GAMMA )
IF( C.NE.ZERO ) THEN
P = ( GAMMA*GAMMA ) / C
ELSE
P = OLDC*BB
END IF
130 CONTINUE
!
E( L-1 ) = S*P
D( L ) = SIGMA + GAMMA
GO TO 100
!
! Eigenvalue found.
!
140 CONTINUE
D( L ) = P
!
L = L - 1
IF( L.GE.LEND ) &
GO TO 100
GO TO 150
!
END IF
!
! Undo scaling if necessary
!
150 CONTINUE
IF( ISCALE.EQ.1 ) &
CALL DLASCL
( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, &
D( LSV ), N, INFO )
IF( ISCALE.EQ.2 ) &
CALL DLASCL
( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, &
D( LSV ), N, INFO )
!
! Check for no convergence to an eigenvalue after a total
! of N*MAXIT iterations.
!
IF( JTOT.LT.NMAXIT ) &
GO TO 10
DO 160 I = 1, N - 1
IF( E( I ).NE.ZERO ) &
INFO = INFO + 1
160 CONTINUE
GO TO 180
!
! Sort eigenvalues in increasing order.
!
170 CONTINUE
CALL DLASRT
( 'I', N, D, INFO )
!
180 CONTINUE
RETURN
!
! End of DSTERF
!
END SUBROUTINE DSTERF