SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO ) 1,10
!
!  -- LAPACK routine (version 3.1) --
!     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
!     November 2006
!
!     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAU( * ), &
                         WORK( * )
!     ..
!
!  Purpose
!  =======
!
!  DSYTRD reduces a real symmetric matrix A to real symmetric
!  tridiagonal form T by an orthogonal similarity transformation:
!  Q**T * A * Q = T.
!
!  Arguments
!  =========
!
!  UPLO    (input) CHARACTER*1
!          = 'U':  Upper triangle of A is stored;
!          = 'L':  Lower triangle of A is stored.
!
!  N       (input) INTEGER
!          The order of the matrix A.  N >= 0.
!
!  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
!          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
!          N-by-N upper triangular part of A contains the upper
!          triangular part of the matrix A, and the strictly lower
!          triangular part of A is not referenced.  If UPLO = 'L', the
!          leading N-by-N lower triangular part of A contains the lower
!          triangular part of the matrix A, and the strictly upper
!          triangular part of A is not referenced.
!          On exit, if UPLO = 'U', the diagonal and first superdiagonal
!          of A are overwritten by the corresponding elements of the
!          tridiagonal matrix T, and the elements above the first
!          superdiagonal, with the array TAU, represent the orthogonal
!          matrix Q as a product of elementary reflectors; if UPLO
!          = 'L', the diagonal and first subdiagonal of A are over-
!          written by the corresponding elements of the tridiagonal
!          matrix T, and the elements below the first subdiagonal, with
!          the array TAU, represent the orthogonal matrix Q as a product
!          of elementary reflectors. See Further Details.
!
!  LDA     (input) INTEGER
!          The leading dimension of the array A.  LDA >= max(1,N).
!
!  D       (output) DOUBLE PRECISION array, dimension (N)
!          The diagonal elements of the tridiagonal matrix T:
!          D(i) = A(i,i).
!
!  E       (output) DOUBLE PRECISION array, dimension (N-1)
!          The off-diagonal elements of the tridiagonal matrix T:
!          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
!
!  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
!          The scalar factors of the elementary reflectors (see Further
!          Details).
!
!  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!
!  LWORK   (input) INTEGER
!          The dimension of the array WORK.  LWORK >= 1.
!          For optimum performance LWORK >= N*NB, where NB is the
!          optimal blocksize.
!
!          If LWORK = -1, then a workspace query is assumed; the routine
!          only calculates the optimal size of the WORK array, returns
!          this value as the first entry of the WORK array, and no error
!          message related to LWORK is issued by XERBLA.
!
!  INFO    (output) INTEGER
!          = 0:  successful exit
!          < 0:  if INFO = -i, the i-th argument had an illegal value
!
!  Further Details
!  ===============
!
!  If UPLO = 'U', the matrix Q is represented as a product of elementary
!  reflectors
!
!     Q = H(n-1) . . . H(2) H(1).
!
!  Each H(i) has the form
!
!     H(i) = I - tau * v * v'
!
!  where tau is a real scalar, and v is a real vector with
!  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
!  A(1:i-1,i+1), and tau in TAU(i).
!
!  If UPLO = 'L', the matrix Q is represented as a product of elementary
!  reflectors
!
!     Q = H(1) H(2) . . . H(n-1).
!
!  Each H(i) has the form
!
!     H(i) = I - tau * v * v'
!
!  where tau is a real scalar, and v is a real vector with
!  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
!  and tau in TAU(i).
!
!  The contents of A on exit are illustrated by the following examples
!  with n = 5:
!
!  if UPLO = 'U':                       if UPLO = 'L':
!
!    (  d   e   v2  v3  v4 )              (  d                  )
!    (      d   e   v3  v4 )              (  e   d              )
!    (          d   e   v4 )              (  v1  e   d          )
!    (              d   e  )              (  v1  v2  e   d      )
!    (                  d  )              (  v1  v2  v3  e   d  )
!
!  where d and e denote diagonal and off-diagonal elements of T, and vi
!  denotes an element of the vector defining H(i).
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
!     ..
!     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB, &
                         NBMIN, NX
!     ..
!     .. External Subroutines ..
!     EXTERNAL           DLATRD, DSYR2K, DSYTD2, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX
!     ..
!     .. External Functions ..
!     LOGICAL            LSAME
!     INTEGER            ILAENV
!     EXTERNAL           LSAME, ILAENV
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters
!
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
         INFO = -9
      END IF
!
      IF( INFO.EQ.0 ) THEN
!
!        Determine the block size.
!
         NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
         LWKOPT = N*NB
         WORK( 1 ) = LWKOPT
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSYTRD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
!
      NX = N
      IWS = 1
      IF( NB.GT.1 .AND. NB.LT.N ) THEN
!
!        Determine when to cross over from blocked to unblocked code
!        (last block is always handled by unblocked code).
!
         NX = MAX( NB, ILAENV( 3, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
         IF( NX.LT.N ) THEN
!
!           Determine if workspace is large enough for blocked code.
!
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
!
!              Not enough workspace to use optimal NB:  determine the
!              minimum value of NB, and reduce NB or force use of
!              unblocked code by setting NX = N.
!
               NB = MAX( LWORK / LDWORK, 1 )
               NBMIN = ILAENV( 2, 'DSYTRD', UPLO, N, -1, -1, -1 )
               IF( NB.LT.NBMIN ) &
                  NX = N
            END IF
         ELSE
            NX = N
         END IF
      ELSE
         NB = 1
      END IF
!
      IF( UPPER ) THEN
!
!        Reduce the upper triangle of A.
!        Columns 1:kk are handled by the unblocked method.
!
         KK = N - ( ( N-NX+NB-1 ) / NB )*NB
         DO 20 I = N - NB + 1, KK + 1, -NB
!
!           Reduce columns i:i+nb-1 to tridiagonal form and form the
!           matrix W which is needed to update the unreduced part of
!           the matrix
!
            CALL DLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK, &
                         LDWORK )
!
!           Update the unreduced submatrix A(1:i-1,1:i-1), using an
!           update of the form:  A := A - V*W' - W*V'
!
            CALL DSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ), &
                         LDA, WORK, LDWORK, ONE, A, LDA )
!
!           Copy superdiagonal elements back into A, and diagonal
!           elements into D
!
            DO 10 J = I, I + NB - 1
               A( J-1, J ) = E( J-1 )
               D( J ) = A( J, J )
   10       CONTINUE
   20    CONTINUE
!
!        Use unblocked code to reduce the last or only block
!
         CALL DSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
      ELSE
!
!        Reduce the lower triangle of A
!
         DO 40 I = 1, N - NX, NB
!
!           Reduce columns i:i+nb-1 to tridiagonal form and form the
!           matrix W which is needed to update the unreduced part of
!           the matrix
!
            CALL DLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ), &
                         TAU( I ), WORK, LDWORK )
!
!           Update the unreduced submatrix A(i+ib:n,i+ib:n), using
!           an update of the form:  A := A - V*W' - W*V'
!
            CALL DSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE, &
                         A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE, &
                         A( I+NB, I+NB ), LDA )
!
!           Copy subdiagonal elements back into A, and diagonal
!           elements into D
!
            DO 30 J = I, I + NB - 1
               A( J+1, J ) = E( J )
               D( J ) = A( J, J )
   30       CONTINUE
   40    CONTINUE
!
!        Use unblocked code to reduce the last or only block
!
         CALL DSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ), &
                      TAU( I ), IINFO )
      END IF
!
      WORK( 1 ) = LWKOPT
      RETURN
!
!     End of DSYTRD
!
      END SUBROUTINE DSYTRD