SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO ) 1,10
!
! -- LAPACK routine (version 3.1) --
! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
! November 2006
!
! .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, LWORK, N
! ..
! .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ), &
WORK( * )
! ..
!
! Purpose
! =======
!
! DSYTRD reduces a real symmetric matrix A to real symmetric
! tridiagonal form T by an orthogonal similarity transformation:
! Q**T * A * Q = T.
!
! Arguments
! =========
!
! UPLO (input) CHARACTER*1
! = 'U': Upper triangle of A is stored;
! = 'L': Lower triangle of A is stored.
!
! N (input) INTEGER
! The order of the matrix A. N >= 0.
!
! A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
! On entry, the symmetric matrix A. If UPLO = 'U', the leading
! N-by-N upper triangular part of A contains the upper
! triangular part of the matrix A, and the strictly lower
! triangular part of A is not referenced. If UPLO = 'L', the
! leading N-by-N lower triangular part of A contains the lower
! triangular part of the matrix A, and the strictly upper
! triangular part of A is not referenced.
! On exit, if UPLO = 'U', the diagonal and first superdiagonal
! of A are overwritten by the corresponding elements of the
! tridiagonal matrix T, and the elements above the first
! superdiagonal, with the array TAU, represent the orthogonal
! matrix Q as a product of elementary reflectors; if UPLO
! = 'L', the diagonal and first subdiagonal of A are over-
! written by the corresponding elements of the tridiagonal
! matrix T, and the elements below the first subdiagonal, with
! the array TAU, represent the orthogonal matrix Q as a product
! of elementary reflectors. See Further Details.
!
! LDA (input) INTEGER
! The leading dimension of the array A. LDA >= max(1,N).
!
! D (output) DOUBLE PRECISION array, dimension (N)
! The diagonal elements of the tridiagonal matrix T:
! D(i) = A(i,i).
!
! E (output) DOUBLE PRECISION array, dimension (N-1)
! The off-diagonal elements of the tridiagonal matrix T:
! E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
!
! TAU (output) DOUBLE PRECISION array, dimension (N-1)
! The scalar factors of the elementary reflectors (see Further
! Details).
!
! WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
! On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!
! LWORK (input) INTEGER
! The dimension of the array WORK. LWORK >= 1.
! For optimum performance LWORK >= N*NB, where NB is the
! optimal blocksize.
!
! If LWORK = -1, then a workspace query is assumed; the routine
! only calculates the optimal size of the WORK array, returns
! this value as the first entry of the WORK array, and no error
! message related to LWORK is issued by XERBLA.
!
! INFO (output) INTEGER
! = 0: successful exit
! < 0: if INFO = -i, the i-th argument had an illegal value
!
! Further Details
! ===============
!
! If UPLO = 'U', the matrix Q is represented as a product of elementary
! reflectors
!
! Q = H(n-1) . . . H(2) H(1).
!
! Each H(i) has the form
!
! H(i) = I - tau * v * v'
!
! where tau is a real scalar, and v is a real vector with
! v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
! A(1:i-1,i+1), and tau in TAU(i).
!
! If UPLO = 'L', the matrix Q is represented as a product of elementary
! reflectors
!
! Q = H(1) H(2) . . . H(n-1).
!
! Each H(i) has the form
!
! H(i) = I - tau * v * v'
!
! where tau is a real scalar, and v is a real vector with
! v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
! and tau in TAU(i).
!
! The contents of A on exit are illustrated by the following examples
! with n = 5:
!
! if UPLO = 'U': if UPLO = 'L':
!
! ( d e v2 v3 v4 ) ( d )
! ( d e v3 v4 ) ( e d )
! ( d e v4 ) ( v1 e d )
! ( d e ) ( v1 v2 e d )
! ( d ) ( v1 v2 v3 e d )
!
! where d and e denote diagonal and off-diagonal elements of T, and vi
! denotes an element of the vector defining H(i).
!
! =====================================================================
!
! .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
! ..
! .. Local Scalars ..
LOGICAL LQUERY, UPPER
INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB, &
NBMIN, NX
! ..
! .. External Subroutines ..
! EXTERNAL DLATRD, DSYR2K, DSYTD2, XERBLA
! ..
! .. Intrinsic Functions ..
INTRINSIC MAX
! ..
! .. External Functions ..
! LOGICAL LSAME
! INTEGER ILAENV
! EXTERNAL LSAME, ILAENV
! ..
! .. Executable Statements ..
!
! Test the input parameters
!
INFO = 0
UPPER = LSAME
( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
INFO = -9
END IF
!
IF( INFO.EQ.0 ) THEN
!
! Determine the block size.
!
NB = ILAENV
( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
LWKOPT = N*NB
WORK( 1 ) = LWKOPT
END IF
!
IF( INFO.NE.0 ) THEN
CALL XERBLA
( 'DSYTRD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
!
! Quick return if possible
!
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
!
NX = N
IWS = 1
IF( NB.GT.1 .AND. NB.LT.N ) THEN
!
! Determine when to cross over from blocked to unblocked code
! (last block is always handled by unblocked code).
!
NX = MAX( NB, ILAENV( 3, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
IF( NX.LT.N ) THEN
!
! Determine if workspace is large enough for blocked code.
!
LDWORK = N
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
!
! Not enough workspace to use optimal NB: determine the
! minimum value of NB, and reduce NB or force use of
! unblocked code by setting NX = N.
!
NB = MAX( LWORK / LDWORK, 1 )
NBMIN = ILAENV
( 2, 'DSYTRD', UPLO, N, -1, -1, -1 )
IF( NB.LT.NBMIN ) &
NX = N
END IF
ELSE
NX = N
END IF
ELSE
NB = 1
END IF
!
IF( UPPER ) THEN
!
! Reduce the upper triangle of A.
! Columns 1:kk are handled by the unblocked method.
!
KK = N - ( ( N-NX+NB-1 ) / NB )*NB
DO 20 I = N - NB + 1, KK + 1, -NB
!
! Reduce columns i:i+nb-1 to tridiagonal form and form the
! matrix W which is needed to update the unreduced part of
! the matrix
!
CALL DLATRD
( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK, &
LDWORK )
!
! Update the unreduced submatrix A(1:i-1,1:i-1), using an
! update of the form: A := A - V*W' - W*V'
!
CALL DSYR2K
( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ), &
LDA, WORK, LDWORK, ONE, A, LDA )
!
! Copy superdiagonal elements back into A, and diagonal
! elements into D
!
DO 10 J = I, I + NB - 1
A( J-1, J ) = E( J-1 )
D( J ) = A( J, J )
10 CONTINUE
20 CONTINUE
!
! Use unblocked code to reduce the last or only block
!
CALL DSYTD2
( UPLO, KK, A, LDA, D, E, TAU, IINFO )
ELSE
!
! Reduce the lower triangle of A
!
DO 40 I = 1, N - NX, NB
!
! Reduce columns i:i+nb-1 to tridiagonal form and form the
! matrix W which is needed to update the unreduced part of
! the matrix
!
CALL DLATRD
( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ), &
TAU( I ), WORK, LDWORK )
!
! Update the unreduced submatrix A(i+ib:n,i+ib:n), using
! an update of the form: A := A - V*W' - W*V'
!
CALL DSYR2K
( UPLO, 'No transpose', N-I-NB+1, NB, -ONE, &
A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE, &
A( I+NB, I+NB ), LDA )
!
! Copy subdiagonal elements back into A, and diagonal
! elements into D
!
DO 30 J = I, I + NB - 1
A( J+1, J ) = E( J )
D( J ) = A( J, J )
30 CONTINUE
40 CONTINUE
!
! Use unblocked code to reduce the last or only block
!
CALL DSYTD2
( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ), &
TAU( I ), IINFO )
END IF
!
WORK( 1 ) = LWKOPT
RETURN
!
! End of DSYTRD
!
END SUBROUTINE DSYTRD