SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) 2,38
!
! -- LAPACK routine (version 3.1) --
! Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
! November 2006
!
! .. Scalar Arguments ..
CHARACTER COMPZ
INTEGER INFO, LDZ, N
! ..
! .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
! ..
!
! Purpose
! =======
!
! DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
! symmetric tridiagonal matrix using the implicit QL or QR method.
! The eigenvectors of a full or band symmetric matrix can also be found
! if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
! tridiagonal form.
!
! Arguments
! =========
!
! COMPZ (input) CHARACTER*1
! = 'N': Compute eigenvalues only.
! = 'V': Compute eigenvalues and eigenvectors of the original
! symmetric matrix. On entry, Z must contain the
! orthogonal matrix used to reduce the original matrix
! to tridiagonal form.
! = 'I': Compute eigenvalues and eigenvectors of the
! tridiagonal matrix. Z is initialized to the identity
! matrix.
!
! N (input) INTEGER
! The order of the matrix. N >= 0.
!
! D (input/output) DOUBLE PRECISION array, dimension (N)
! On entry, the diagonal elements of the tridiagonal matrix.
! On exit, if INFO = 0, the eigenvalues in ascending order.
!
! E (input/output) DOUBLE PRECISION array, dimension (N-1)
! On entry, the (n-1) subdiagonal elements of the tridiagonal
! matrix.
! On exit, E has been destroyed.
!
! Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
! On entry, if COMPZ = 'V', then Z contains the orthogonal
! matrix used in the reduction to tridiagonal form.
! On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
! orthonormal eigenvectors of the original symmetric matrix,
! and if COMPZ = 'I', Z contains the orthonormal eigenvectors
! of the symmetric tridiagonal matrix.
! If COMPZ = 'N', then Z is not referenced.
!
! LDZ (input) INTEGER
! The leading dimension of the array Z. LDZ >= 1, and if
! eigenvectors are desired, then LDZ >= max(1,N).
!
! WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
! If COMPZ = 'N', then WORK is not referenced.
!
! INFO (output) INTEGER
! = 0: successful exit
! < 0: if INFO = -i, the i-th argument had an illegal value
! > 0: the algorithm has failed to find all the eigenvalues in
! a total of 30*N iterations; if INFO = i, then i
! elements of E have not converged to zero; on exit, D
! and E contain the elements of a symmetric tridiagonal
! matrix which is orthogonally similar to the original
! matrix.
!
! =====================================================================
!
! .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, &
THREE = 3.0D0 )
INTEGER MAXIT
PARAMETER ( MAXIT = 30 )
! ..
! .. Local Scalars ..
INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND, &
LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1, &
NM1, NMAXIT
DOUBLE PRECISION ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2, &
S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
! ..
! .. External Functions ..
! LOGICAL LSAME
! DOUBLE PRECISION DLAMCH, DLANST, DLAPY2
! EXTERNAL LSAME, DLAMCH, DLANST, DLAPY2
! ..
! .. External Subroutines ..
! EXTERNAL DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR, &
! DLASRT, DSWAP, XERBLA
! ..
! .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SIGN, SQRT
! ..
! .. Executable Statements ..
!
! Test the input parameters.
!
INFO = 0
!
IF( LSAME( COMPZ, 'N' ) ) THEN
ICOMPZ = 0
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
! LOGICAL LSAME
ICOMPZ = 2
ELSE
ICOMPZ = -1
END IF
IF( ICOMPZ.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, &
N ) ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA
( 'DSTEQR', -INFO )
RETURN
END IF
!
! Quick return if possible
!
IF( N.EQ.0 ) &
RETURN
!
IF( N.EQ.1 ) THEN
IF( ICOMPZ.EQ.2 ) &
Z( 1, 1 ) = ONE
RETURN
END IF
!
! Determine the unit roundoff and over/underflow thresholds.
!
EPS = DLAMCH
( 'E' )
EPS2 = EPS**2
SAFMIN = DLAMCH
( 'S' )
SAFMAX = ONE / SAFMIN
SSFMAX = SQRT( SAFMAX ) / THREE
SSFMIN = SQRT( SAFMIN ) / EPS2
!
! Compute the eigenvalues and eigenvectors of the tridiagonal
! matrix.
!
IF( ICOMPZ.EQ.2 ) &
CALL DLASET
( 'Full', N, N, ZERO, ONE, Z, LDZ )
!
NMAXIT = N*MAXIT
JTOT = 0
!
! Determine where the matrix splits and choose QL or QR iteration
! for each block, according to whether top or bottom diagonal
! element is smaller.
!
L1 = 1
NM1 = N - 1
!
10 CONTINUE
IF( L1.GT.N ) &
GO TO 160
IF( L1.GT.1 ) &
E( L1-1 ) = ZERO
IF( L1.LE.NM1 ) THEN
DO 20 M = L1, NM1
TST = ABS( E( M ) )
IF( TST.EQ.ZERO ) &
GO TO 30
IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+ &
1 ) ) ) )*EPS ) THEN
E( M ) = ZERO
GO TO 30
END IF
20 CONTINUE
END IF
M = N
!
30 CONTINUE
L = L1
LSV = L
LEND = M
LENDSV = LEND
L1 = M + 1
IF( LEND.EQ.L ) &
GO TO 10
!
! Scale submatrix in rows and columns L to LEND
!
ANORM = DLANST
( 'I', LEND-L+1, D( L ), E( L ) )
ISCALE = 0
IF( ANORM.EQ.ZERO ) &
GO TO 10
IF( ANORM.GT.SSFMAX ) THEN
ISCALE = 1
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, &
INFO )
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, &
INFO )
ELSE IF( ANORM.LT.SSFMIN ) THEN
ISCALE = 2
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, &
INFO )
CALL DLASCL
( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, &
INFO )
END IF
!
! Choose between QL and QR iteration
!
IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
LEND = LSV
L = LENDSV
END IF
!
IF( LEND.GT.L ) THEN
!
! QL Iteration
!
! Look for small subdiagonal element.
!
40 CONTINUE
IF( L.NE.LEND ) THEN
LENDM1 = LEND - 1
DO 50 M = L, LENDM1
TST = ABS( E( M ) )**2
IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+ &
SAFMIN )GO TO 60
50 CONTINUE
END IF
!
M = LEND
!
60 CONTINUE
IF( M.LT.LEND ) &
E( M ) = ZERO
P = D
( L )
IF( M.EQ.L ) &
GO TO 80
!
! If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
! to compute its eigensystem.
!
IF( M.EQ.L+1 ) THEN
IF( ICOMPZ.GT.0 ) THEN
CALL DLAEV2
( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
WORK( L ) = C
WORK( N-1+L ) = S
CALL DLASR
( 'R', 'V', 'B', N, 2, WORK( L ), &
WORK( N-1+L ), Z( 1, L ), LDZ )
ELSE
CALL DLAE2
( D( L ), E( L ), D( L+1 ), RT1, RT2 )
END IF
D( L ) = RT1
D( L+1 ) = RT2
E( L ) = ZERO
L = L + 2
IF( L.LE.LEND ) &
GO TO 40
GO TO 140
END IF
!
IF( JTOT.EQ.NMAXIT ) &
GO TO 140
JTOT = JTOT + 1
!
! Form shift.
!
G = ( D( L+1 )-P ) / ( TWO*E( L ) )
R = DLAPY2
( G, ONE )
G = D
( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
!
S = ONE
C = ONE
P = ZERO
!
! Inner loop
!
MM1 = M - 1
DO 70 I = MM1, L, -1
F = S*E( I )
B = C*E( I )
CALL DLARTG
( G, F, C, S, R )
IF( I.NE.M-1 ) &
E( I+1 ) = R
G = D
( I+1 ) - P
R = ( D( I )-G )*S + TWO*C*B
P = S*R
D( I+1 ) = G + P
G = C*R - B
!
! If eigenvectors are desired, then save rotations.
!
IF( ICOMPZ.GT.0 ) THEN
WORK( I ) = C
WORK( N-1+I ) = -S
END IF
!
70 CONTINUE
!
! If eigenvectors are desired, then apply saved rotations.
!
IF( ICOMPZ.GT.0 ) THEN
MM = M - L + 1
CALL DLASR
( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ), &
Z( 1, L ), LDZ )
END IF
!
D( L ) = D
( L ) - P
E( L ) = G
GO TO 40
!
! Eigenvalue found.
!
80 CONTINUE
D( L ) = P
!
L = L + 1
IF( L.LE.LEND ) &
GO TO 40
GO TO 140
!
ELSE
!
! QR Iteration
!
! Look for small superdiagonal element.
!
90 CONTINUE
IF( L.NE.LEND ) THEN
LENDP1 = LEND + 1
DO 100 M = L, LENDP1, -1
TST = ABS( E( M-1 ) )**2
IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+ &
SAFMIN )GO TO 110
100 CONTINUE
END IF
!
M = LEND
!
110 CONTINUE
IF( M.GT.LEND ) &
E( M-1 ) = ZERO
P = D
( L )
IF( M.EQ.L ) &
GO TO 130
!
! If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
! to compute its eigensystem.
!
IF( M.EQ.L-1 ) THEN
IF( ICOMPZ.GT.0 ) THEN
CALL DLAEV2
( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
WORK( M ) = C
WORK( N-1+M ) = S
CALL DLASR
( 'R', 'V', 'F', N, 2, WORK( M ), &
WORK( N-1+M ), Z( 1, L-1 ), LDZ )
ELSE
CALL DLAE2
( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
END IF
D( L-1 ) = RT1
D( L ) = RT2
E( L-1 ) = ZERO
L = L - 2
IF( L.GE.LEND ) &
GO TO 90
GO TO 140
END IF
!
IF( JTOT.EQ.NMAXIT ) &
GO TO 140
JTOT = JTOT + 1
!
! Form shift.
!
G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
R = DLAPY2
( G, ONE )
G = D
( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
!
S = ONE
C = ONE
P = ZERO
!
! Inner loop
!
LM1 = L - 1
DO 120 I = M, LM1
F = S*E( I )
B = C*E( I )
CALL DLARTG
( G, F, C, S, R )
IF( I.NE.M ) &
E( I-1 ) = R
G = D
( I ) - P
R = ( D( I+1 )-G )*S + TWO*C*B
P = S*R
D( I ) = G + P
G = C*R - B
!
! If eigenvectors are desired, then save rotations.
!
IF( ICOMPZ.GT.0 ) THEN
WORK( I ) = C
WORK( N-1+I ) = S
END IF
!
120 CONTINUE
!
! If eigenvectors are desired, then apply saved rotations.
!
IF( ICOMPZ.GT.0 ) THEN
MM = L - M + 1
CALL DLASR
( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ), &
Z( 1, M ), LDZ )
END IF
!
D( L ) = D
( L ) - P
E( LM1 ) = G
GO TO 90
!
! Eigenvalue found.
!
130 CONTINUE
D( L ) = P
!
L = L - 1
IF( L.GE.LEND ) &
GO TO 90
GO TO 140
!
END IF
!
! Undo scaling if necessary
!
140 CONTINUE
IF( ISCALE.EQ.1 ) THEN
CALL DLASCL
( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, &
D( LSV ), N, INFO )
CALL DLASCL
( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ), &
N, INFO )
ELSE IF( ISCALE.EQ.2 ) THEN
CALL DLASCL
( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, &
D( LSV ), N, INFO )
CALL DLASCL
( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ), &
N, INFO )
END IF
!
! Check for no convergence to an eigenvalue after a total
! of N*MAXIT iterations.
!
IF( JTOT.LT.NMAXIT ) &
GO TO 10
DO 150 I = 1, N - 1
IF( E( I ).NE.ZERO ) &
INFO = INFO + 1
150 CONTINUE
GO TO 190
!
! Order eigenvalues and eigenvectors.
!
160 CONTINUE
IF( ICOMPZ.EQ.0 ) THEN
!
! Use Quick Sort
!
CALL DLASRT
( 'I', N, D, INFO )
!
ELSE
!
! Use Selection Sort to minimize swaps of eigenvectors
!
DO 180 II = 2, N
I = II - 1
K = I
P = D
( I )
DO 170 J = II, N
IF( D( J ).LT.P ) THEN
K = J
P = D
( J )
END IF
170 CONTINUE
IF( K.NE.I ) THEN
D( K ) = D
( I )
D( I ) = P
CALL DSWAP
( N, Z( 1, I ), 1, Z( 1, K ), 1 )
END IF
180 CONTINUE
END IF
!
190 CONTINUE
RETURN
!
! End of DSTEQR
!
END SUBROUTINE DSTEQR